the-last-thing/code/expt/t-drive-sel.py

239 lines
6.9 KiB
Python
Raw Permalink Normal View History

2021-10-06 01:44:50 +02:00
#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
from datetime import datetime
from geopy.distance import distance
import lmdk_bgt
import lmdk_lib
2021-10-06 13:14:28 +02:00
import lmdk_sel
import exp_mech
2021-10-06 01:44:50 +02:00
import numpy as np
from matplotlib import pyplot as plt
import time
def main(args):
# The data files
data_files = {
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
}
# Data related info
data_info = {
'T-drive': {
'uid': 2,
'lmdks': {
0: {'dist': 0, 'per': 1000}, # 0.0%
20: {'dist': 2095, 'per': 30}, # 19.6%
40: {'dist': 2790, 'per': 30}, # 40.2%
60: {'dist': 3590, 'per': 30}, # 59.9%
80: {'dist': 4825, 'per': 30}, # 79.4%
100: {'dist': 10350, 'per': 30} # 100.0%
}
}
}
# The data sets
data_sets = {}
# Load data sets
for df in data_files:
args.res = data_files[df]
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
# Geo-I configuration
# epsilon = level/radius
# Radius is in meters
bgt_conf = [
{'epsilon': 1},
]
# Number of methods
n = 3
# Width of bars
bar_width = 1/(n + 1)
# The x axis
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
x_margin = bar_width*(n/2 + 1)
for d in data_sets:
print('\n##############################', d, '\n')
args.res = data_files[d]
data = data_sets[d]
# Truncate trajectory according to arguments
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
# Initialize plot
lmdk_lib.plot_init()
# The x axis
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
# The y axis
plt.ylabel('Mean absolute error (m)') # Set y axis label.
plt.yscale('log')
plt.ylim(1, 1000000)
2021-10-06 01:44:50 +02:00
# Bar offset
x_offset = -(bar_width/2)*(n - 1)
mae_u = np.zeros(len(data_info[d]['lmdks']))
2021-10-13 15:04:57 +02:00
mae_u_sel= np.zeros(len(data_info[d]['lmdks']))
2021-10-06 01:44:50 +02:00
mae_s = np.zeros(len(data_info[d]['lmdks']))
2021-10-13 15:04:57 +02:00
mae_s_sel = np.zeros(len(data_info[d]['lmdks']))
2021-10-06 01:44:50 +02:00
mae_a = np.zeros(len(data_info[d]['lmdks']))
2021-10-13 15:04:57 +02:00
mae_a_sel = np.zeros(len(data_info[d]['lmdks']))
2021-10-06 01:44:50 +02:00
mae_evt = 0
mae_usr = 0
for i, lmdk in enumerate(data_info[d]['lmdks']):
# Find landmarks
args.dist = data_info[d]['lmdks'][lmdk]['dist']
args.per = data_info[d]['lmdks'][lmdk]['per']
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
for bgt in bgt_conf:
for _ in range(args.iter):
2021-10-13 09:03:36 +02:00
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, bgt['epsilon'])
2021-10-06 01:44:50 +02:00
# Skip
2021-10-13 15:04:57 +02:00
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, eps_out)
2021-10-13 17:37:54 +02:00
mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
2021-10-13 15:04:57 +02:00
rls_data_s_sel, _ = lmdk_bgt.skip(seq, lmdks_sel, eps_out)
2021-10-13 17:37:54 +02:00
mae_s_sel[i] += lmdk_bgt.mae(seq, rls_data_s_sel)/args.iter
2021-10-06 01:44:50 +02:00
# Uniform
2021-10-13 15:04:57 +02:00
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, eps_out)
2021-10-13 17:37:54 +02:00
mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
2021-10-13 15:04:57 +02:00
rls_data_u_sel, _ = lmdk_bgt.uniform_r(seq, lmdks_sel, eps_out)
2021-10-13 17:37:54 +02:00
mae_u_sel[i] += lmdk_bgt.mae(seq, rls_data_u_sel)/args.iter
2021-10-06 01:44:50 +02:00
# Adaptive
2021-10-13 15:04:57 +02:00
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, eps_out, .5, .5)
2021-10-13 17:37:54 +02:00
mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
2021-10-13 15:04:57 +02:00
rls_data_a_sel, _, _ = lmdk_bgt.adaptive(seq, lmdks_sel, eps_out, .5, .5)
2021-10-13 17:37:54 +02:00
mae_a_sel[i] += lmdk_bgt.mae(seq, rls_data_a_sel)/args.iter
2021-10-06 01:44:50 +02:00
# Calculate once
if lmdk == min(data_info[d]['lmdks']):
# Event
2021-10-06 01:44:50 +02:00
rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
elif lmdk == max(data_info[d]['lmdks']):
# User
2021-10-06 01:44:50 +02:00
rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
# Plot lines
plt.axhline(
y = mae_evt,
color = '#212121',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
plt.axhline(
y = mae_usr,
color = '#616161',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
# Plot bars
plt.bar(
x_i + x_offset,
2021-10-15 14:40:02 +02:00
mae_s,
2021-10-06 01:44:50 +02:00
bar_width,
label='Skip',
linewidth=lmdk_lib.line_width
)
2021-10-13 16:35:35 +02:00
plt.plot(
2021-10-13 15:04:57 +02:00
x_i + x_offset,
2021-10-15 14:40:02 +02:00
mae_s_sel,
marker='+',
2021-10-13 16:35:35 +02:00
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
markeredgewidth=lmdk_lib.line_width,
markeredgecolor='#bdbdbd',
linestyle='none',
2021-10-13 15:04:57 +02:00
)
2021-10-06 01:44:50 +02:00
x_offset += bar_width
plt.bar(
x_i + x_offset,
2021-10-15 14:40:02 +02:00
mae_u,
2021-10-06 01:44:50 +02:00
bar_width,
label='Uniform',
linewidth=lmdk_lib.line_width
)
2021-10-13 16:35:35 +02:00
plt.plot(
2021-10-13 15:04:57 +02:00
x_i + x_offset,
2021-10-15 14:40:02 +02:00
mae_u_sel,
marker='+',
2021-10-13 16:35:35 +02:00
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
markeredgewidth=lmdk_lib.line_width,
markeredgecolor='#bdbdbd',
linestyle='none',
2021-10-13 15:04:57 +02:00
)
2021-10-06 01:44:50 +02:00
x_offset += bar_width
plt.bar(
x_i + x_offset,
2021-10-15 14:40:02 +02:00
mae_a,
2021-10-06 01:44:50 +02:00
bar_width,
label='Adaptive',
linewidth=lmdk_lib.line_width
)
2021-10-13 16:35:35 +02:00
plt.plot(
2021-10-13 15:04:57 +02:00
x_i + x_offset,
mae_a,
2021-10-15 14:40:02 +02:00
marker='+',
2021-10-13 16:35:35 +02:00
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
markeredgewidth=lmdk_lib.line_width,
markeredgecolor='#bdbdbd',
linestyle='none',
2021-10-13 15:04:57 +02:00
)
x_offset += bar_width
2021-10-06 01:44:50 +02:00
path = str('../../rslt/bgt_cmp/' + d)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
# plt.show()
# Save plot
2021-10-13 15:04:57 +02:00
lmdk_lib.save_plot(path + '-sel-cmp.pdf')
2021-10-06 01:44:50 +02:00
print('[OK]', flush=True)
def parse_args():
'''
Parse arguments.
Optional:
dist - The coordinates distance threshold in meters.
per - The timestaps period threshold in mimutes.
time - The total timestamps.
iter - The total iterations.
'''
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()