code: Several fixes
This commit is contained in:
parent
b8aa9dfc3d
commit
a1454c5a98
@ -71,13 +71,11 @@ def main(args):
|
||||
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
|
||||
|
||||
# Skip
|
||||
rls_data_s, bgts_s = lmdk_bgt.skip_cont(seq, lmdks_sel, eps_out)
|
||||
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||||
rls_data_s, _ = lmdk_bgt.skip_cont(seq, lmdks_sel, eps_out)
|
||||
mae_s[i] += (lmdk_bgt.mae_cont(rls_data_s)/args.iter)*100
|
||||
|
||||
# Uniform
|
||||
rls_data_u, bgts_u = lmdk_bgt.uniform_cont(seq, lmdks_sel, eps_out)
|
||||
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_u)
|
||||
rls_data_u, _ = lmdk_bgt.uniform_cont(seq, lmdks_sel, eps_out)
|
||||
mae_u[i] += (lmdk_bgt.mae_cont(rls_data_u)/args.iter)*100
|
||||
|
||||
# Adaptive
|
||||
|
@ -64,19 +64,18 @@ def main(args):
|
||||
|
||||
for _ in range(args.iter):
|
||||
|
||||
lmdks, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
|
||||
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
|
||||
|
||||
# Skip
|
||||
rls_data_s, bgts_s = lmdk_bgt.skip_cons(seq, lmdks, eps_out)
|
||||
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||||
rls_data_s, _ = lmdk_bgt.skip_cons(seq, lmdks_sel, eps_out)
|
||||
mae_s[i] += lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter
|
||||
|
||||
# Uniform
|
||||
rls_data_u, bgts_u = lmdk_bgt.uniform_cons(seq, lmdks, eps_out)
|
||||
rls_data_u, _ = lmdk_bgt.uniform_cons(seq, lmdks_sel, eps_out)
|
||||
mae_u[i] += lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter
|
||||
|
||||
# Adaptive
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, eps_out, .5, .5)
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks_sel, eps_out, .5, .5)
|
||||
mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
|
||||
|
||||
# Calculate once
|
||||
|
@ -57,8 +57,6 @@ def main(args):
|
||||
print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
|
||||
mae = np.zeros(len(lmdk_n))
|
||||
for n_i, n in enumerate(lmdk_n):
|
||||
if n == lmdk_n[-1]:
|
||||
break
|
||||
for r in range(args.iter):
|
||||
lmdks = lmdk_lib.get_lmdks(seq, n, d)
|
||||
hist, h = lmdk_lib.get_hist(seq, lmdks)
|
||||
@ -67,20 +65,11 @@ def main(args):
|
||||
res, _ = exp_mech.exponential(hist, opts, exp_mech.score, delta, epsilon)
|
||||
mae[n_i] += lmdk_lib.get_norm(hist, res)/args.iter # Euclidean
|
||||
# mae[n_i] += lmdk_lib.get_emd(hist, res)/args.iter # Wasserstein
|
||||
mae = mae/21 # Euclidean
|
||||
# mae = mae/11.75 # Wasserstein
|
||||
# Rescaling (min-max normalization)
|
||||
# https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)
|
||||
mae = (mae - mae.min())/(mae.max() - mae.min())
|
||||
print('[OK]', flush=True)
|
||||
# # Plot bar for current distribution
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae,
|
||||
# bar_width,
|
||||
# label=label,
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# # Change offset for next bar
|
||||
# x_offset += bar_width
|
||||
# Plot line
|
||||
# Plot bar for current distribution
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae,
|
||||
|
@ -87,18 +87,18 @@ def main(args):
|
||||
for bgt in bgt_conf:
|
||||
for _ in range(args.iter):
|
||||
|
||||
lmdks, eps_out = lmdk_sel.find_lmdks(seq, lmdks, bgt['epsilon'])
|
||||
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, bgt['epsilon'])
|
||||
|
||||
# Skip
|
||||
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, eps_out)
|
||||
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks_sel, eps_out)
|
||||
mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
|
||||
|
||||
# Uniform
|
||||
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, eps_out)
|
||||
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks_sel, eps_out)
|
||||
mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
|
||||
|
||||
# Adaptive
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, eps_out, .5, .5)
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks_sel, eps_out, .5, .5)
|
||||
mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
|
||||
|
||||
# Calculate once
|
||||
|
@ -189,8 +189,10 @@ def get_hist(seq, lmdks):
|
||||
# lmdks_rel = np.append(lmdks_rel, end)
|
||||
|
||||
# Dealing with zeros.
|
||||
if len(seq) == 0 or len(lmdks) == 0:
|
||||
if len(seq) == 0:
|
||||
return np.zeros(math.ceil(max(seq))), 1
|
||||
elif len(lmdks) == 0:
|
||||
return np.zeros(1), len(seq)
|
||||
|
||||
# Interquartile range (IQR) is a measure of statistical dispersion, being equal to the difference between 75th and 25th percentiles, or between upper and lower quartiles.
|
||||
# https://en.wikipedia.org/wiki/Interquartile_range
|
||||
|
@ -406,7 +406,7 @@ def find_lmdks_eps(seq, lmdks, epsilon):
|
||||
'''
|
||||
# The new landmarks
|
||||
lmdks_new = lmdks
|
||||
if len(lmdks) > 0 and len(seq) != len(lmdks):
|
||||
if len(seq) != len(lmdks):
|
||||
# Get landmarks timestamps in sequence
|
||||
lmdks_seq = find_lmdks_seq(seq, lmdks)
|
||||
# Turn landmarks to histogram
|
||||
@ -426,7 +426,7 @@ def find_lmdks_eps(seq, lmdks, epsilon):
|
||||
# Already landmarks
|
||||
lmdks_seq_pt = lmdks_seq[(lmdks_seq >= pt[0]) & (lmdks_seq <= pt[1])]
|
||||
# Sample randomly from the rest of the sequence
|
||||
size = hist_new[i] - len(lmdks_seq_pt)
|
||||
size = int(hist_new[i] - len(lmdks_seq_pt))
|
||||
rglr = np.setdiff1d(np.arange(pt[0], pt[1] + 1), lmdks_seq_pt)
|
||||
# Add already landmarks
|
||||
lmdks_seq_new = np.concatenate([lmdks_seq_new, lmdks_seq_pt])
|
||||
|
Loading…
Reference in New Issue
Block a user