2021-10-06 01:44:50 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import sys
|
|
|
|
sys.path.insert(1, '../lib')
|
|
|
|
import argparse
|
|
|
|
from datetime import datetime
|
|
|
|
from geopy.distance import distance
|
|
|
|
import lmdk_bgt
|
|
|
|
import lmdk_lib
|
2021-10-06 13:14:28 +02:00
|
|
|
import lmdk_sel
|
|
|
|
import exp_mech
|
2021-10-06 01:44:50 +02:00
|
|
|
import numpy as np
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
# The data files
|
|
|
|
data_files = {
|
|
|
|
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
|
|
|
|
}
|
|
|
|
# Data related info
|
|
|
|
data_info = {
|
|
|
|
'T-drive': {
|
|
|
|
'uid': 2,
|
|
|
|
'lmdks': {
|
|
|
|
0: {'dist': 0, 'per': 1000}, # 0.0%
|
|
|
|
20: {'dist': 2095, 'per': 30}, # 19.6%
|
|
|
|
40: {'dist': 2790, 'per': 30}, # 40.2%
|
|
|
|
60: {'dist': 3590, 'per': 30}, # 59.9%
|
|
|
|
80: {'dist': 4825, 'per': 30}, # 79.4%
|
|
|
|
100: {'dist': 10350, 'per': 30} # 100.0%
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
# The data sets
|
|
|
|
data_sets = {}
|
|
|
|
# Load data sets
|
|
|
|
for df in data_files:
|
|
|
|
args.res = data_files[df]
|
|
|
|
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
|
|
|
|
# Geo-I configuration
|
|
|
|
# epsilon = level/radius
|
|
|
|
# Radius is in meters
|
|
|
|
bgt_conf = [
|
|
|
|
{'epsilon': 1},
|
|
|
|
]
|
|
|
|
|
|
|
|
# Number of methods
|
|
|
|
n = 3
|
|
|
|
# Width of bars
|
|
|
|
bar_width = 1/(n + 1)
|
|
|
|
# The x axis
|
|
|
|
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
|
|
|
|
x_margin = bar_width*(n/2 + 1)
|
|
|
|
|
|
|
|
for d in data_sets:
|
|
|
|
print('\n##############################', d, '\n')
|
|
|
|
args.res = data_files[d]
|
|
|
|
data = data_sets[d]
|
|
|
|
# Truncate trajectory according to arguments
|
|
|
|
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
|
|
|
|
|
|
|
|
# Initialize plot
|
|
|
|
lmdk_lib.plot_init()
|
|
|
|
# The x axis
|
|
|
|
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
|
|
|
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
|
|
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
|
|
|
# The y axis
|
|
|
|
plt.ylabel('Mean absolute error (m)') # Set y axis label.
|
|
|
|
plt.yscale('log')
|
2021-10-11 01:12:35 +02:00
|
|
|
plt.ylim(1, 1000000)
|
2021-10-06 01:44:50 +02:00
|
|
|
# Bar offset
|
|
|
|
x_offset = -(bar_width/2)*(n - 1)
|
|
|
|
|
|
|
|
mae_u = np.zeros(len(data_info[d]['lmdks']))
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_u_sel= np.zeros(len(data_info[d]['lmdks']))
|
2021-10-06 01:44:50 +02:00
|
|
|
mae_s = np.zeros(len(data_info[d]['lmdks']))
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_s_sel = np.zeros(len(data_info[d]['lmdks']))
|
2021-10-06 01:44:50 +02:00
|
|
|
mae_a = np.zeros(len(data_info[d]['lmdks']))
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_a_sel = np.zeros(len(data_info[d]['lmdks']))
|
2021-10-06 01:44:50 +02:00
|
|
|
mae_evt = 0
|
|
|
|
mae_usr = 0
|
|
|
|
for i, lmdk in enumerate(data_info[d]['lmdks']):
|
|
|
|
# Find landmarks
|
|
|
|
args.dist = data_info[d]['lmdks'][lmdk]['dist']
|
|
|
|
args.per = data_info[d]['lmdks'][lmdk]['per']
|
|
|
|
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
|
|
|
|
for bgt in bgt_conf:
|
|
|
|
for _ in range(args.iter):
|
|
|
|
|
2021-10-13 09:03:36 +02:00
|
|
|
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, bgt['epsilon'])
|
2021-10-06 01:44:50 +02:00
|
|
|
|
|
|
|
# Skip
|
2021-10-13 15:04:57 +02:00
|
|
|
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, eps_out)
|
|
|
|
mae_s[i] += (lmdk_bgt.mae(seq, rls_data_s)/args.iter)*100
|
|
|
|
rls_data_s_sel, _ = lmdk_bgt.skip(seq, lmdks_sel, eps_out)
|
|
|
|
mae_s_sel[i] += (lmdk_bgt.mae(seq, rls_data_s_sel)/args.iter)*100
|
2021-10-06 01:44:50 +02:00
|
|
|
|
|
|
|
# Uniform
|
2021-10-13 15:04:57 +02:00
|
|
|
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, eps_out)
|
|
|
|
mae_u[i] += (lmdk_bgt.mae(seq, rls_data_u)/args.iter)*100
|
|
|
|
rls_data_u_sel, _ = lmdk_bgt.uniform_r(seq, lmdks_sel, eps_out)
|
|
|
|
mae_u_sel[i] += (lmdk_bgt.mae(seq, rls_data_u_sel)/args.iter)*100
|
2021-10-06 01:44:50 +02:00
|
|
|
|
|
|
|
# Adaptive
|
2021-10-13 15:04:57 +02:00
|
|
|
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, eps_out, .5, .5)
|
|
|
|
mae_a[i] += (lmdk_bgt.mae(seq, rls_data_a)/args.iter)*100
|
|
|
|
rls_data_a_sel, _, _ = lmdk_bgt.adaptive(seq, lmdks_sel, eps_out, .5, .5)
|
|
|
|
mae_a_sel[i] += (lmdk_bgt.mae(seq, rls_data_a_sel)/args.iter)*100
|
2021-10-06 01:44:50 +02:00
|
|
|
|
2021-10-11 01:12:35 +02:00
|
|
|
# Calculate once
|
|
|
|
if lmdk == min(data_info[d]['lmdks']):
|
|
|
|
# Event
|
2021-10-06 01:44:50 +02:00
|
|
|
rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
|
|
|
|
mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
|
2021-10-11 01:12:35 +02:00
|
|
|
elif lmdk == max(data_info[d]['lmdks']):
|
|
|
|
# User
|
2021-10-06 01:44:50 +02:00
|
|
|
rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
|
|
|
|
mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
|
|
|
|
|
|
|
|
# Plot lines
|
|
|
|
plt.axhline(
|
|
|
|
y = mae_evt,
|
|
|
|
color = '#212121',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
|
|
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
|
|
|
plt.axhline(
|
|
|
|
y = mae_usr,
|
|
|
|
color = '#616161',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
|
|
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
|
|
|
|
|
|
|
# Plot bars
|
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_s_sel,
|
2021-10-06 01:44:50 +02:00
|
|
|
bar_width,
|
|
|
|
label='Skip',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
2021-10-13 15:04:57 +02:00
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
|
|
|
mae_s,
|
|
|
|
bar_width,
|
|
|
|
color='none',
|
|
|
|
linestyle='dashed',
|
|
|
|
edgecolor='#bdbdbd',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
2021-10-06 01:44:50 +02:00
|
|
|
x_offset += bar_width
|
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_u_sel,
|
2021-10-06 01:44:50 +02:00
|
|
|
bar_width,
|
|
|
|
label='Uniform',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
2021-10-13 15:04:57 +02:00
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
|
|
|
mae_u,
|
|
|
|
bar_width,
|
|
|
|
color='none',
|
|
|
|
linestyle='dashed',
|
|
|
|
edgecolor='#bdbdbd',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
2021-10-06 01:44:50 +02:00
|
|
|
x_offset += bar_width
|
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
2021-10-13 15:04:57 +02:00
|
|
|
mae_a_sel,
|
2021-10-06 01:44:50 +02:00
|
|
|
bar_width,
|
|
|
|
label='Adaptive',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
2021-10-13 15:04:57 +02:00
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
|
|
|
mae_a,
|
|
|
|
bar_width,
|
|
|
|
color='none',
|
|
|
|
linestyle='dashed',
|
|
|
|
edgecolor='#bdbdbd',
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
|
|
|
x_offset += bar_width
|
2021-10-06 01:44:50 +02:00
|
|
|
|
|
|
|
path = str('../../rslt/bgt_cmp/' + d)
|
|
|
|
# Plot legend
|
|
|
|
lmdk_lib.plot_legend()
|
|
|
|
# Show plot
|
|
|
|
# plt.show()
|
|
|
|
# Save plot
|
2021-10-13 15:04:57 +02:00
|
|
|
lmdk_lib.save_plot(path + '-sel-cmp.pdf')
|
2021-10-06 01:44:50 +02:00
|
|
|
print('[OK]', flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
'''
|
|
|
|
Parse arguments.
|
|
|
|
|
|
|
|
Optional:
|
|
|
|
dist - The coordinates distance threshold in meters.
|
|
|
|
per - The timestaps period threshold in mimutes.
|
|
|
|
time - The total timestamps.
|
|
|
|
iter - The total iterations.
|
|
|
|
'''
|
|
|
|
# Create argument parser.
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
# Mandatory arguments.
|
|
|
|
|
|
|
|
# Optional arguments.
|
|
|
|
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
|
|
|
|
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
|
|
|
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
|
|
|
|
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
|
|
|
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
|
|
|
|
|
|
|
# Parse arguments.
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
try:
|
|
|
|
start_time = time.time()
|
|
|
|
main(parse_args())
|
|
|
|
end_time = time.time()
|
|
|
|
print('##############################')
|
|
|
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
|
|
|
print('##############################')
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print('Interrupted by user.')
|
|
|
|
exit()
|