the-last-thing/code/expt/dist_cor.py

132 lines
3.6 KiB
Python

#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
import gdp
import itertools
import lmdk_bgt
import lmdk_lib
import numpy as np
import os
from matplotlib import pyplot as plt
import time
def main(args):
# Privacy goal
epsilon = 1.0
# Number of timestamps
seq = lmdk_lib.get_seq(1, args.time)
# Correlation degree (higher values means weaker correlations)
cor_deg = np.array([.01, .1, 1.0])
cor_lbl = ['Strong correlation', 'Moderate correlation', 'Weak correlation']
# Distribution type
dist_type = np.array(range(0, 4))
# Number of landmarks
lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
# Width of bars
bar_width = 1/(len(dist_type) + 1)
# For each correlation degree
for c_i, c in enumerate(cor_deg):
# Logging
title = cor_lbl[c_i]
print('(%d/%d) %s' %(c_i + 1, len(cor_deg), title), end='', flush=True)
# The transition matrix
p = gdp.gen_trans_mt(2, c)
# Bar offset
x_offset = -(bar_width/2)*(len(dist_type) - 1)
# Initialize plot
lmdk_lib.plot_init()
# The x axis
x_i = np.arange(len(lmdk_n))
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
plt.xlabel('Landmarks (%)') # Set x axis label.
x_margin = bar_width*(len(dist_type)/2 + 1)
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
# The y axis
plt.ylabel('Temporal privacy loss') # Set y axis label.
plt.yscale('log')
plt.ylim(epsilon/10, 100*len(seq))
# plt.ylim(0, 10000)
for d_i, d in enumerate(dist_type):
print('.', end='', flush=True)
# Initialization
e = np.zeros(len(lmdk_n))
a = np.zeros(len(lmdk_n))
for i, n in enumerate(lmdk_n):
for r in range(args.iter):
# Generate landmarks
lmdks = lmdk_lib.get_lmdks(seq, n, d)
# Uniform budget allocation
e_cur = lmdk_bgt.uniform(seq, lmdks, epsilon)
_, _, a_cur = gdp.tpl_lmdk_mem(e_cur, p, p, seq, lmdks)
# Save privacy loss
e[i] += np.sum(e_cur)/args.iter
a[i] += np.sum(a_cur)/args.iter
# Set label
label = lmdk_lib.dist_type_to_str(d_i)
if d_i == 1:
label = 'Skewed'
# Plot bar for current distribution
plt.bar(
x_i + x_offset,
a,
bar_width,
label=label,
linewidth=lmdk_lib.line_width
)
# Change offset for next bar
x_offset += bar_width
# Plot line for no correlation
plt.plot(
x_i,
e,
linewidth=lmdk_lib.line_width,
color='#e0e0e0',
)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(str('../../rslt/dist_cor/' + title + '.pdf'))
print(' [OK]', flush=True)
'''
Parse arguments.
Optional:
iter - The number of iterations.
time - The time limit of the sequence.
'''
def parse_args():
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-i', '--iter', help='The number of iterations.', type=int, default=1)
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
args = parse_args()
start_time = time.time()
main(args)
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()