#!/usr/bin/env python3 import sys sys.path.insert(1, '../lib') import argparse import gdp import itertools import lmdk_bgt import lmdk_lib import numpy as np import os from matplotlib import pyplot as plt import time def main(args): # Privacy goal epsilon = 1.0 # Number of timestamps seq = lmdk_lib.get_seq(1, args.time) # Correlation degree (higher values means weaker correlations) cor_deg = np.array([.01, .1, 1.0]) cor_lbl = ['Strong correlation', 'Moderate correlation', 'Weak correlation'] # Distribution type dist_type = np.array(range(0, 4)) # Number of landmarks lmdk_n = np.array(range(0, args.time + 1, int(args.time/5))) # Width of bars bar_width = 1/(len(dist_type) + 1) # For each correlation degree for c_i, c in enumerate(cor_deg): # Logging title = cor_lbl[c_i] print('(%d/%d) %s' %(c_i + 1, len(cor_deg), title), end='', flush=True) # The transition matrix p = gdp.gen_trans_mt(2, c) # Bar offset x_offset = -(bar_width/2)*(len(dist_type) - 1) # Initialize plot lmdk_lib.plot_init() # The x axis x_i = np.arange(len(lmdk_n)) plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int)) plt.xlabel('Landmarks (%)') # Set x axis label. x_margin = bar_width*(len(dist_type)/2 + 1) plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin) # The y axis plt.ylabel('Temporal privacy loss') # Set y axis label. plt.yscale('log') plt.ylim(epsilon/10, 100*len(seq)) # plt.ylim(0, 10000) for d_i, d in enumerate(dist_type): print('.', end='', flush=True) # Initialization e = np.zeros(len(lmdk_n)) a = np.zeros(len(lmdk_n)) for i, n in enumerate(lmdk_n): for r in range(args.iter): # Generate landmarks lmdks = lmdk_lib.get_lmdks(seq, n, d) # Uniform budget allocation e_cur = lmdk_bgt.uniform(seq, lmdks, epsilon) _, _, a_cur = gdp.tpl_lmdk_mem(e_cur, p, p, seq, lmdks) # Save privacy loss e[i] += np.sum(e_cur)/args.iter a[i] += np.sum(a_cur)/args.iter # Set label label = lmdk_lib.dist_type_to_str(d_i) if d_i == 1: label = 'Skewed' # Plot bar for current distribution plt.bar( x_i + x_offset, a, bar_width, label=label, linewidth=lmdk_lib.line_width ) # Change offset for next bar x_offset += bar_width # Plot line for no correlation plt.plot( x_i, e, linewidth=lmdk_lib.line_width, color='#e0e0e0', ) # Plot legend lmdk_lib.plot_legend() # Show plot # plt.show() # Save plot lmdk_lib.save_plot(str('../../rslt/dist_cor/' + title + '.pdf')) print(' [OK]', flush=True) ''' Parse arguments. Optional: iter - The number of iterations. time - The time limit of the sequence. ''' def parse_args(): # Create argument parser. parser = argparse.ArgumentParser() # Mandatory arguments. # Optional arguments. parser.add_argument('-i', '--iter', help='The number of iterations.', type=int, default=1) parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100) # Parse arguments. args = parser.parse_args() return args if __name__ == '__main__': try: args = parse_args() start_time = time.time() main(args) end_time = time.time() print('##############################') print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time)))) print('##############################') except KeyboardInterrupt: print('Interrupted by user.') exit()