153 lines
7.9 KiB
TeX
153 lines
7.9 KiB
TeX
\subsection{Protecting {\thethings}}
|
|
\label{subsec:lmdk-sel-sol}
|
|
|
|
The main idea of the privacy-preserving {\thething} selection component is to privately select extra {\thething} event timestamps, i.e.,~dummy {\thethings}, from the set of timestamps $T /\ L$ of the time series $S_T$ and add them to the original {\thething} set $L$.
|
|
Thus, we create a new set $L'$ such that $L \subset L' \subseteq T$.
|
|
We generate a set of dummy {\thething} set options by adding regular event timestamps from $T /\ L$ to $L$ (Section~\ref{subsec:lmdk-set-opts}).
|
|
Then (Section~\ref{subsec:lmdk-opt-sel}), we utilize the exponential mechanism, with a utility function that calculates an indicator for each of the options in the set based on how much it differs from the original {\thething} set $L$, and randomly select one ot the options that we created earlier.
|
|
This process provides an extra layer of privacy protection to {\thethings}, and thus allows the release, and thereafter processing, of {\thething} timestamps.
|
|
|
|
% We utilize the exponential mechanism with a utility function that calculates an indicator for each of the options in the set that we selected in the previous step.
|
|
% The utility depends on the positioning of the {\thething} timestamps of an option in the series, e.g.,~the distance from the previous/next {\thething}, the distance from the start/end of the series, etc.
|
|
|
|
|
|
\subsubsection{{\Thething} set options}
|
|
\label{subsec:lmdk-set-opts}
|
|
|
|
This step aims to select a set of candidate {\thething} timestamps options either by randomizing the actual timestamps (Section~\ref{subsec:lmdk-rnd}), or by inserting dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}) to the actual {\thething} timestamps.
|
|
|
|
|
|
\paragraph{Dummy {\thething} generation}
|
|
\label{subsec:lmdk-dum-gen}
|
|
|
|
Selecting extra events, on top of the actual {\thethings}, as dummy {\thethings} can render actual ones indistinguishable.
|
|
The goal is to select a list of sets with additional timestamps from a series of events at timestamps $\{t_n\}$ for a set of {\thethings} at $\{l_k\} \subseteq \{t_n\}$.
|
|
Algorithms~\ref{algo:lmdk-sel-opt} and \ref{algo:lmdk-sel-heur} approach this problem with an optimal and heuristic methodology, respectively.
|
|
|
|
Function \calcMetric measures an indicator for the union of $\{l_k\}$ and a timestamp combination from $\{t_n\} \setminus \{l_k\}$.
|
|
Function \evalSeq evaluates the result of \calcMetric by, e.g.,~estimating the standard deviation of all the distances from the previous/next {\thething}.
|
|
Function \getOpts returns all possible \emph{valid} sets of combinations \opt such that $\{l_{k+i}\} \subset \{l_{k+j}\}, \forall i, j \in [k, n] \mid i < j$, i.e.,~larger options must contain all of the timestamps that are present in smaller ones.
|
|
Each combination contains a set of timestamps with sizes $k + 1, k + 2, \dots, n$, where each one of them is a combination of $\{l_k\}$ with $x \in [1, n - k]$ timestamps from $\{t_n\}$.
|
|
|
|
\begin{algorithm}
|
|
\caption{Optimal dummy {\thething} set options selection}
|
|
\label{algo:lmdk-sel-opt}
|
|
|
|
\DontPrintSemicolon
|
|
|
|
\KwData{$\{t_n\}, \{l_k\}$}
|
|
|
|
\SetKwInput{KwData}{Input}
|
|
|
|
\KwResult{\optim}
|
|
\BlankLine
|
|
|
|
% Evaluate the original
|
|
\metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\;
|
|
\evalOrig $\leftarrow$ \evalSeq{\metricOrig}\;
|
|
|
|
% Get all possible option combinations
|
|
\opts $\leftarrow$ \getOpts{$\{t_n\}, \{l_k\}$}\;
|
|
|
|
% Track the minimum (best) evaluation
|
|
\diffMin $\leftarrow$ $\infty$\;
|
|
|
|
% Track the optimal sequence (the one with the best evaluation)
|
|
\optim $\leftarrow$ $[]$\;
|
|
|
|
\ForEach{\opt $\in$ \opts}{\label{algo:lmdk-sel-opt-for-each}
|
|
\evalSum $\leftarrow 0$\;
|
|
\ForEach{\opti $\in$ \opt}{
|
|
\metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \opti, \{l_k\}$}\;\label{algo:lmdk-sel-opt-comparison}
|
|
\evalSum $\leftarrow$ \evalSum $+$ \evalSeq{\metricCur}\;
|
|
|
|
% Compare with current optimal
|
|
\diffCur $\leftarrow \left|\evalSum/\#\opt - \evalOrig\right|$\;
|
|
\If{\diffCur $<$ \diffMin}{
|
|
\diffMin $\leftarrow$ \diffCur\;
|
|
\optim $\leftarrow$ \opt\;
|
|
}
|
|
}
|
|
}\label{algo:lmdk-sel-opt-end}
|
|
\Return{\optim}
|
|
\end{algorithm}
|
|
|
|
Algorithm~\ref{algo:lmdk-sel-opt}, in particular, between Lines~{\ref{algo:lmdk-sel-opt-for-each}-\ref{algo:lmdk-sel-opt-end}} evaluates each option in \opts.
|
|
It finds the option that is the most \emph{similar} to the original (Lines~{\ref{algo:lmdk-sel-opt-comparison}-\ref{algo:lmdk-sel-opt-end}}), i.e.,~the option that has an evaluation that differs the least from that of the sequence $\{t_n\}$ with {\thethings} $\{l_k\}$.
|
|
|
|
\begin{algorithm}
|
|
\caption{Heuristic dummy {\thething} set options selection}
|
|
\label{algo:lmdk-sel-heur}
|
|
|
|
\DontPrintSemicolon
|
|
|
|
\KwData{$\{t_n\}, \{l_k\}$}
|
|
\KwResult{\optim}
|
|
\BlankLine
|
|
|
|
% Evaluate the original
|
|
\metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\;
|
|
\evalOrig $\leftarrow$ \evalSeq{\metricOrig}\;
|
|
|
|
% Get all possible option combinations
|
|
\optim $\leftarrow$ $[]$\;
|
|
|
|
$\{l_{k'}\} \leftarrow \{l_k\}$\;
|
|
|
|
\While{$\{l_{k'}\} \neq \{t_n\}$}{\label{algo:lmdk-sel-heur-while}
|
|
% Track the minimum (best) evaluation
|
|
\diffMin $\leftarrow$ $\infty$\;
|
|
|
|
\optimi $\leftarrow$ $0$\;
|
|
% Find the combinations for one more point
|
|
\ForEach{\reg $\in \{t_n\} \setminus \{l_{k'}\}$}{
|
|
|
|
% Evaluate current
|
|
\metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \reg, \{l_{k'}\}$}\;\label{algo:lmdk-sel-heur-comparison}
|
|
\evalCur $\leftarrow$ \evalSeq{\metricCur}\;
|
|
|
|
% Compare evaluations
|
|
\diffCur $\leftarrow$ $\left|\evalCur - \evalOrig\right|$\;
|
|
|
|
\If{\diffCur $<$ \diffMin}{
|
|
\diffMin $\leftarrow$ \diffCur\;
|
|
\optimi $\leftarrow$ \reg\;
|
|
}\label{algo:lmdk-sel-heur-comparison-end}
|
|
}
|
|
|
|
% Save new point to landmarks
|
|
$k' \leftarrow k' + 1$\;
|
|
$l_{k'} \leftarrow \optimi$\;
|
|
|
|
% Add new option
|
|
\optim.add($\{l_{k'}\} \setminus \{l_k\}$)\;
|
|
}\label{algo:lmdk-sel-heur-end}
|
|
|
|
\Return{\optim}
|
|
\end{algorithm}
|
|
|
|
Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology.
|
|
At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $\{t_n\} \setminus \{l_k\}$.
|
|
Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}).
|
|
This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$\{l_{k'}\} = \{t_n\}$.
|
|
|
|
Note that the reverse heuristic approach, i.e.,~starting with $\{t_n\}$ {\thethings} and removing until $\{l_k\}$, performs worse than and occasionally the same with Algorithm~\ref{algo:lmdk-sel-heur}.
|
|
|
|
|
|
\subsubsection{Privacy-preserving option selection}
|
|
\label{subsec:lmdk-opt-sel}
|
|
|
|
% Nearby events
|
|
Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}.
|
|
Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall.
|
|
This leads to worse data utility.
|
|
|
|
% Depending on the {\thething} discovery technique
|
|
The values of events near a {\thething} are usually similar to that of the latter.
|
|
Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget.
|
|
Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility.
|
|
|
|
% Distant events
|
|
However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events.
|
|
Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.
|