\subsection{Protecting {\thethings}} \label{subsec:lmdk-sel-sol} The main idea of the privacy-preserving {\thething} selection component is to privately select extra {\thething} event timestamps, i.e.,~dummy {\thethings}, from the set of timestamps $T /\ L$ of the time series $S_T$ and add them to the original {\thething} set $L$. Thus, we create a new set $L'$ such that $L \subset L' \subseteq T$. We generate a set of dummy {\thething} set options by adding regular event timestamps from $T /\ L$ to $L$ (Section~\ref{subsec:lmdk-set-opts}). Then (Section~\ref{subsec:lmdk-opt-sel}), we utilize the exponential mechanism, with a utility function that calculates an indicator for each of the options in the set based on how much it differs from the original {\thething} set $L$, and randomly select one ot the options that we created earlier. This process provides an extra layer of privacy protection to {\thethings}, and thus allows the release, and thereafter processing, of {\thething} timestamps. % We utilize the exponential mechanism with a utility function that calculates an indicator for each of the options in the set that we selected in the previous step. % The utility depends on the positioning of the {\thething} timestamps of an option in the series, e.g.,~the distance from the previous/next {\thething}, the distance from the start/end of the series, etc. \subsubsection{{\Thething} set options} \label{subsec:lmdk-set-opts} This step aims to select a set of candidate {\thething} timestamps options either by randomizing the actual timestamps (Section~\ref{subsec:lmdk-rnd}), or by inserting dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}) to the actual {\thething} timestamps. \paragraph{Dummy {\thething} generation} \label{subsec:lmdk-dum-gen} Selecting extra events, on top of the actual {\thethings}, as dummy {\thethings} can render actual ones indistinguishable. The goal is to select a list of sets with additional timestamps from a series of events at timestamps $\{t_n\}$ for a set of {\thethings} at $\{l_k\} \subseteq \{t_n\}$. Algorithms~\ref{algo:lmdk-sel-opt} and \ref{algo:lmdk-sel-heur} approach this problem with an optimal and heuristic methodology, respectively. Function \calcMetric measures an indicator for the union of $\{l_k\}$ and a timestamp combination from $\{t_n\} \setminus \{l_k\}$. Function \evalSeq evaluates the result of \calcMetric by, e.g.,~estimating the standard deviation of all the distances from the previous/next {\thething}. Function \getOpts returns all possible \emph{valid} sets of combinations \opt such that $\{l_{k+i}\} \subset \{l_{k+j}\}, \forall i, j \in [k, n] \mid i < j$, i.e.,~larger options must contain all of the timestamps that are present in smaller ones. Each combination contains a set of timestamps with sizes $k + 1, k + 2, \dots, n$, where each one of them is a combination of $\{l_k\}$ with $x \in [1, n - k]$ timestamps from $\{t_n\}$. \begin{algorithm} \caption{Optimal dummy {\thething} set options selection} \label{algo:lmdk-sel-opt} \DontPrintSemicolon \KwData{$\{t_n\}, \{l_k\}$} \SetKwInput{KwData}{Input} \KwResult{\optim} \BlankLine % Evaluate the original \metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\; \evalOrig $\leftarrow$ \evalSeq{\metricOrig}\; % Get all possible option combinations \opts $\leftarrow$ \getOpts{$\{t_n\}, \{l_k\}$}\; % Track the minimum (best) evaluation \diffMin $\leftarrow$ $\infty$\; % Track the optimal sequence (the one with the best evaluation) \optim $\leftarrow$ $[]$\; \ForEach{\opt $\in$ \opts}{\label{algo:lmdk-sel-opt-for-each} \evalSum $\leftarrow 0$\; \ForEach{\opti $\in$ \opt}{ \metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \opti, \{l_k\}$}\;\label{algo:lmdk-sel-opt-comparison} \evalSum $\leftarrow$ \evalSum $+$ \evalSeq{\metricCur}\; % Compare with current optimal \diffCur $\leftarrow \left|\evalSum/\#\opt - \evalOrig\right|$\; \If{\diffCur $<$ \diffMin}{ \diffMin $\leftarrow$ \diffCur\; \optim $\leftarrow$ \opt\; } } }\label{algo:lmdk-sel-opt-end} \Return{\optim} \end{algorithm} Algorithm~\ref{algo:lmdk-sel-opt}, in particular, between Lines~{\ref{algo:lmdk-sel-opt-for-each}-\ref{algo:lmdk-sel-opt-end}} evaluates each option in \opts. It finds the option that is the most \emph{similar} to the original (Lines~{\ref{algo:lmdk-sel-opt-comparison}-\ref{algo:lmdk-sel-opt-end}}), i.e.,~the option that has an evaluation that differs the least from that of the sequence $\{t_n\}$ with {\thethings} $\{l_k\}$. \begin{algorithm} \caption{Heuristic dummy {\thething} set options selection} \label{algo:lmdk-sel-heur} \DontPrintSemicolon \KwData{$\{t_n\}, \{l_k\}$} \KwResult{\optim} \BlankLine % Evaluate the original \metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\; \evalOrig $\leftarrow$ \evalSeq{\metricOrig}\; % Get all possible option combinations \optim $\leftarrow$ $[]$\; $\{l_{k'}\} \leftarrow \{l_k\}$\; \While{$\{l_{k'}\} \neq \{t_n\}$}{\label{algo:lmdk-sel-heur-while} % Track the minimum (best) evaluation \diffMin $\leftarrow$ $\infty$\; \optimi $\leftarrow$ $0$\; % Find the combinations for one more point \ForEach{\reg $\in \{t_n\} \setminus \{l_{k'}\}$}{ % Evaluate current \metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \reg, \{l_{k'}\}$}\;\label{algo:lmdk-sel-heur-comparison} \evalCur $\leftarrow$ \evalSeq{\metricCur}\; % Compare evaluations \diffCur $\leftarrow$ $\left|\evalCur - \evalOrig\right|$\; \If{\diffCur $<$ \diffMin}{ \diffMin $\leftarrow$ \diffCur\; \optimi $\leftarrow$ \reg\; }\label{algo:lmdk-sel-heur-comparison-end} } % Save new point to landmarks $k' \leftarrow k' + 1$\; $l_{k'} \leftarrow \optimi$\; % Add new option \optim.add($\{l_{k'}\} \setminus \{l_k\}$)\; }\label{algo:lmdk-sel-heur-end} \Return{\optim} \end{algorithm} Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology. At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $\{t_n\} \setminus \{l_k\}$. Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}). This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$\{l_{k'}\} = \{t_n\}$. Note that the reverse heuristic approach, i.e.,~starting with $\{t_n\}$ {\thethings} and removing until $\{l_k\}$, performs worse than and occasionally the same with Algorithm~\ref{algo:lmdk-sel-heur}. \subsubsection{Privacy-preserving option selection} \label{subsec:lmdk-opt-sel} % Nearby events Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}. Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall. This leads to worse data utility. % Depending on the {\thething} discovery technique The values of events near a {\thething} are usually similar to that of the latter. Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget. Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility. % Distant events However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events. Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.