statistical: Reviewed farokhi2020temporally
This commit is contained in:
		@ -76,7 +76,10 @@
 | 
				
			|||||||
      \cite{li2007hiding} & & & & & (auto) & & \\ \hdashline
 | 
					      \cite{li2007hiding} & & & & & (auto) & & \\ \hdashline
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      \hyperlink{chen2017pegasus}{\emph{PeGaSus}} & infinite & streaming & global & event & linkage & perturbation & differential \\
 | 
					      \hyperlink{chen2017pegasus}{\emph{PeGaSus}} & infinite & streaming & global & event & linkage & perturbation & differential \\
 | 
				
			||||||
      \cite{chen2017pegasus} & & & & & & (Laplace) & privacy \\
 | 
					      \cite{chen2017pegasus} & & & & & & (Laplace) & privacy \\ \hdashline
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      \hyperlink{farokhi2020temporally}{Farokhi} & infinite & streaming & global & - & linkage & perturbation & differential \\
 | 
				
			||||||
 | 
					      \cite{farokhi2020temporally} & & & & & & (Laplace) & privacy \\
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      \bottomrule
 | 
					      \bottomrule
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -838,6 +838,7 @@
 | 
				
			|||||||
  publisher = {IEEE}
 | 
					  publisher = {IEEE}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@article{jain2016big,
 | 
					@article{jain2016big,
 | 
				
			||||||
  title     = {Big data privacy: a technological perspective and review},
 | 
					  title     = {Big data privacy: a technological perspective and review},
 | 
				
			||||||
  author    = {Jain, Priyank and Gyanchandani, Manasi and Khare, Nilay},
 | 
					  author    = {Jain, Priyank and Gyanchandani, Manasi and Khare, Nilay},
 | 
				
			||||||
@ -849,7 +850,6 @@
 | 
				
			|||||||
  publisher = {Springer}
 | 
					  publisher = {Springer}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
@article{ji2014differential,
 | 
					@article{ji2014differential,
 | 
				
			||||||
  title   = {Differential privacy and machine learning: a survey and review},
 | 
					  title   = {Differential privacy and machine learning: a survey and review},
 | 
				
			||||||
  author  = {Ji, Zhanglong and Lipton, Zachary C and Elkan, Charles},
 | 
					  author  = {Ji, Zhanglong and Lipton, Zachary C and Elkan, Charles},
 | 
				
			||||||
@ -1267,6 +1267,15 @@
 | 
				
			|||||||
  publisher = {Now Publishers, Inc.}
 | 
					  publisher = {Now Publishers, Inc.}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@inproceedings{naim2019off,
 | 
				
			||||||
 | 
					  title        = {ON-OFF privacy with correlated requests},
 | 
				
			||||||
 | 
					  author       = {Naim, Carolina and Ye, Fangwei and El Rouayheb, Salim},
 | 
				
			||||||
 | 
					  booktitle    = {2019 IEEE International Symposium on Information Theory (ISIT)},
 | 
				
			||||||
 | 
					  pages        = {817--821},
 | 
				
			||||||
 | 
					  year         = {2019},
 | 
				
			||||||
 | 
					  organization = {IEEE}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@inproceedings{narayanan2008robust,
 | 
					@inproceedings{narayanan2008robust,
 | 
				
			||||||
  title        = {Robust de-anonymization of large sparse data sets},
 | 
					  title        = {Robust de-anonymization of large sparse data sets},
 | 
				
			||||||
  author       = {Narayanan, Arvind and Shmatikov, Vitaly},
 | 
					  author       = {Narayanan, Arvind and Shmatikov, Vitaly},
 | 
				
			||||||
@ -1385,6 +1394,7 @@
 | 
				
			|||||||
  publisher = {Cambridge university press}
 | 
					  publisher = {Cambridge university press}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%  new algorithm
 | 
				
			||||||
@misc{russell2018fitness,
 | 
					@misc{russell2018fitness,
 | 
				
			||||||
  title        = {Fitness app {Strava} exposes the location of military bases},
 | 
					  title        = {Fitness app {Strava} exposes the location of military bases},
 | 
				
			||||||
  author       = {Russell, Jon},
 | 
					  author       = {Russell, Jon},
 | 
				
			||||||
@ -1402,7 +1412,6 @@
 | 
				
			|||||||
  organization = {IEEE}
 | 
					  organization = {IEEE}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
%  new algorithm
 | 
					 | 
				
			||||||
@article{satyanarayanan2017emergence,
 | 
					@article{satyanarayanan2017emergence,
 | 
				
			||||||
  title     = {The emergence of edge computing},
 | 
					  title     = {The emergence of edge computing},
 | 
				
			||||||
  author    = {Satyanarayanan, Mahadev},
 | 
					  author    = {Satyanarayanan, Mahadev},
 | 
				
			||||||
@ -1674,41 +1683,6 @@
 | 
				
			|||||||
  publisher = {Springer}
 | 
					  publisher = {Springer}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@inproceedings{naim2019off,
 | 
					 | 
				
			||||||
  title={ON-OFF privacy with correlated requests},
 | 
					 | 
				
			||||||
  author={Naim, Carolina and Ye, Fangwei and El Rouayheb, Salim},
 | 
					 | 
				
			||||||
  booktitle={2019 IEEE International Symposium on Information Theory (ISIT)},
 | 
					 | 
				
			||||||
  pages={817--821},
 | 
					 | 
				
			||||||
  year={2019},
 | 
					 | 
				
			||||||
  organization={IEEE}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@inproceedings{ye2019preserving,
 | 
					 | 
				
			||||||
  title={Preserving ON-OFF privacy for past and future requests},
 | 
					 | 
				
			||||||
  author={Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
 | 
					 | 
				
			||||||
  booktitle={2019 IEEE Information Theory Workshop (ITW)},
 | 
					 | 
				
			||||||
  pages={1--5},
 | 
					 | 
				
			||||||
  year={2019},
 | 
					 | 
				
			||||||
  organization={IEEE}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@article{ye2020off,
 | 
					 | 
				
			||||||
  title={ON-OFF Privacy in the Presence of Correlation},
 | 
					 | 
				
			||||||
  author={Ye, Fangwei and Naim, Carolina and Rouayheb, Salim El},
 | 
					 | 
				
			||||||
  journal={arXiv preprint arXiv:2004.04186},
 | 
					 | 
				
			||||||
  year={2020}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@article{ye2021off,
 | 
					 | 
				
			||||||
  title={ON-OFF Privacy Against Correlation Over Time},
 | 
					 | 
				
			||||||
  author={Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
 | 
					 | 
				
			||||||
  journal={IEEE Transactions on Information Forensics and Security},
 | 
					 | 
				
			||||||
  volume={16},
 | 
					 | 
				
			||||||
  pages={2104--2117},
 | 
					 | 
				
			||||||
  year={2021},
 | 
					 | 
				
			||||||
  publisher={IEEE}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@article{warner1965randomized,
 | 
					@article{warner1965randomized,
 | 
				
			||||||
  title     = {Randomized response: A survey technique for eliminating evasive answer bias},
 | 
					  title     = {Randomized response: A survey technique for eliminating evasive answer bias},
 | 
				
			||||||
  author    = {Warner, Stanley L},
 | 
					  author    = {Warner, Stanley L},
 | 
				
			||||||
@ -1844,6 +1818,32 @@
 | 
				
			|||||||
  organization = {IEEE}
 | 
					  organization = {IEEE}
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@inproceedings{ye2019preserving,
 | 
				
			||||||
 | 
					  title        = {Preserving ON-OFF privacy for past and future requests},
 | 
				
			||||||
 | 
					  author       = {Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
 | 
				
			||||||
 | 
					  booktitle    = {2019 IEEE Information Theory Workshop (ITW)},
 | 
				
			||||||
 | 
					  pages        = {1--5},
 | 
				
			||||||
 | 
					  year         = {2019},
 | 
				
			||||||
 | 
					  organization = {IEEE}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@article{ye2020off,
 | 
				
			||||||
 | 
					  title   = {ON-OFF Privacy in the Presence of Correlation},
 | 
				
			||||||
 | 
					  author  = {Ye, Fangwei and Naim, Carolina and Rouayheb, Salim El},
 | 
				
			||||||
 | 
					  journal = {arXiv preprint arXiv:2004.04186},
 | 
				
			||||||
 | 
					  year    = {2020}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@article{ye2021off,
 | 
				
			||||||
 | 
					  title     = {ON-OFF Privacy Against Correlation Over Time},
 | 
				
			||||||
 | 
					  author    = {Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
 | 
				
			||||||
 | 
					  journal   = {IEEE Transactions on Information Forensics and Security},
 | 
				
			||||||
 | 
					  volume    = {16},
 | 
				
			||||||
 | 
					  pages     = {2104--2117},
 | 
				
			||||||
 | 
					  year      = {2021},
 | 
				
			||||||
 | 
					  publisher = {IEEE}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@inproceedings{yuan2010t,
 | 
					@inproceedings{yuan2010t,
 | 
				
			||||||
  title     = {T-drive: driving directions based on taxi trajectories},
 | 
					  title     = {T-drive: driving directions based on taxi trajectories},
 | 
				
			||||||
  author    = {Yuan, Jing and Zheng, Yu and Zhang, Chengyang and Xie, Wenlei and Xie, Xing and Sun, Guangzhong and Huang, Yan},
 | 
					  author    = {Yuan, Jing and Zheng, Yu and Zhang, Chengyang and Xie, Wenlei and Xie, Xing and Sun, Guangzhong and Huang, Yan},
 | 
				
			||||||
 | 
				
			|||||||
@ -354,3 +354,21 @@ The Perturber consumes the incoming data stream, adds noise $\varepsilon_p$, whi
 | 
				
			|||||||
The data-adaptive Grouper consumes the original stream and partitions the data into well-approximated regions using, also part of the available privacy budget, $\varepsilon_g$.
 | 
					The data-adaptive Grouper consumes the original stream and partitions the data into well-approximated regions using, also part of the available privacy budget, $\varepsilon_g$.
 | 
				
			||||||
Finally, a query specific Smoother combines the independent information produced by the Perturber and the Grouper, and performs post-processing by calculating the final estimates of the Perturber's values for each partition created by the Grouper at each timestamp.
 | 
					Finally, a query specific Smoother combines the independent information produced by the Perturber and the Grouper, and performs post-processing by calculating the final estimates of the Perturber's values for each partition created by the Grouper at each timestamp.
 | 
				
			||||||
The combination of the Perturber and the Grouper follows the sequential composition and post-processing properties of differential privacy, thus, the resulting algorithm satisfies ($\varepsilon_p + \varepsilon_g$)-differential privacy.
 | 
					The combination of the Perturber and the Grouper follows the sequential composition and post-processing properties of differential privacy, thus, the resulting algorithm satisfies ($\varepsilon_p + \varepsilon_g$)-differential privacy.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Temporally Discounted Differential Privacy for Evolving Datasets on an Infinite Horizon
 | 
				
			||||||
 | 
					% - statistical
 | 
				
			||||||
 | 
					% - infinite
 | 
				
			||||||
 | 
					% - streaming
 | 
				
			||||||
 | 
					% - linkage
 | 
				
			||||||
 | 
					% - -
 | 
				
			||||||
 | 
					% - differential privacy
 | 
				
			||||||
 | 
					% - perturbation (Laplace)
 | 
				
			||||||
 | 
					\hypertarget{farokhi2020temporally}{Farokhi}~\cite{farokhi2020temporally} proposed a relaxation of the user-level protection of differential privacy based on the discounted utility theory in the economics literature.
 | 
				
			||||||
 | 
					More specifically, at each timestamp, the scheme of temporally discounted differential privacy assigns different weights to the privacy budgets that have been invested in previous timestamps.
 | 
				
			||||||
 | 
					These weights decrease the further that we observe in the past. 
 | 
				
			||||||
 | 
					The author implements an exponentially and a hyperbolic discounted scheme.
 | 
				
			||||||
 | 
					In the former, the discount factor, which is positive and less than $1$, and in the latter, the discounting coefficient, which is greater or equal to $0$, allows the adjustment of temporal discounting.
 | 
				
			||||||
 | 
					Increasing the discount factor offers stronger privacy protection, equivalent to that of user-level.
 | 
				
			||||||
 | 
					Whereas, increasing the discount coefficient resembles the behavior of event-level differential privacy.
 | 
				
			||||||
 | 
					Selecting a suitable value for the privacy budget and the discount parameter allows for bounding the overall privacy loss in an infinite observation scenario.
 | 
				
			||||||
 | 
					The assumption that all users discount previous data releases limits the applicability of the the current scheme in real-world scenarios.
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user