statistical: Reviewed farokhi2020temporally
This commit is contained in:
parent
c8131d80aa
commit
b4f853f366
@ -76,7 +76,10 @@
|
||||
\cite{li2007hiding} & & & & & (auto) & & \\ \hdashline
|
||||
|
||||
\hyperlink{chen2017pegasus}{\emph{PeGaSus}} & infinite & streaming & global & event & linkage & perturbation & differential \\
|
||||
\cite{chen2017pegasus} & & & & & & (Laplace) & privacy \\
|
||||
\cite{chen2017pegasus} & & & & & & (Laplace) & privacy \\ \hdashline
|
||||
|
||||
\hyperlink{farokhi2020temporally}{Farokhi} & infinite & streaming & global & - & linkage & perturbation & differential \\
|
||||
\cite{farokhi2020temporally} & & & & & & (Laplace) & privacy \\
|
||||
|
||||
\bottomrule
|
||||
|
||||
|
@ -838,6 +838,7 @@
|
||||
publisher = {IEEE}
|
||||
}
|
||||
|
||||
|
||||
@article{jain2016big,
|
||||
title = {Big data privacy: a technological perspective and review},
|
||||
author = {Jain, Priyank and Gyanchandani, Manasi and Khare, Nilay},
|
||||
@ -849,7 +850,6 @@
|
||||
publisher = {Springer}
|
||||
}
|
||||
|
||||
|
||||
@article{ji2014differential,
|
||||
title = {Differential privacy and machine learning: a survey and review},
|
||||
author = {Ji, Zhanglong and Lipton, Zachary C and Elkan, Charles},
|
||||
@ -1267,6 +1267,15 @@
|
||||
publisher = {Now Publishers, Inc.}
|
||||
}
|
||||
|
||||
@inproceedings{naim2019off,
|
||||
title = {ON-OFF privacy with correlated requests},
|
||||
author = {Naim, Carolina and Ye, Fangwei and El Rouayheb, Salim},
|
||||
booktitle = {2019 IEEE International Symposium on Information Theory (ISIT)},
|
||||
pages = {817--821},
|
||||
year = {2019},
|
||||
organization = {IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{narayanan2008robust,
|
||||
title = {Robust de-anonymization of large sparse data sets},
|
||||
author = {Narayanan, Arvind and Shmatikov, Vitaly},
|
||||
@ -1385,6 +1394,7 @@
|
||||
publisher = {Cambridge university press}
|
||||
}
|
||||
|
||||
% new algorithm
|
||||
@misc{russell2018fitness,
|
||||
title = {Fitness app {Strava} exposes the location of military bases},
|
||||
author = {Russell, Jon},
|
||||
@ -1402,7 +1412,6 @@
|
||||
organization = {IEEE}
|
||||
}
|
||||
|
||||
% new algorithm
|
||||
@article{satyanarayanan2017emergence,
|
||||
title = {The emergence of edge computing},
|
||||
author = {Satyanarayanan, Mahadev},
|
||||
@ -1674,41 +1683,6 @@
|
||||
publisher = {Springer}
|
||||
}
|
||||
|
||||
@inproceedings{naim2019off,
|
||||
title={ON-OFF privacy with correlated requests},
|
||||
author={Naim, Carolina and Ye, Fangwei and El Rouayheb, Salim},
|
||||
booktitle={2019 IEEE International Symposium on Information Theory (ISIT)},
|
||||
pages={817--821},
|
||||
year={2019},
|
||||
organization={IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{ye2019preserving,
|
||||
title={Preserving ON-OFF privacy for past and future requests},
|
||||
author={Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
|
||||
booktitle={2019 IEEE Information Theory Workshop (ITW)},
|
||||
pages={1--5},
|
||||
year={2019},
|
||||
organization={IEEE}
|
||||
}
|
||||
|
||||
@article{ye2020off,
|
||||
title={ON-OFF Privacy in the Presence of Correlation},
|
||||
author={Ye, Fangwei and Naim, Carolina and Rouayheb, Salim El},
|
||||
journal={arXiv preprint arXiv:2004.04186},
|
||||
year={2020}
|
||||
}
|
||||
|
||||
@article{ye2021off,
|
||||
title={ON-OFF Privacy Against Correlation Over Time},
|
||||
author={Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
|
||||
journal={IEEE Transactions on Information Forensics and Security},
|
||||
volume={16},
|
||||
pages={2104--2117},
|
||||
year={2021},
|
||||
publisher={IEEE}
|
||||
}
|
||||
|
||||
@article{warner1965randomized,
|
||||
title = {Randomized response: A survey technique for eliminating evasive answer bias},
|
||||
author = {Warner, Stanley L},
|
||||
@ -1844,6 +1818,32 @@
|
||||
organization = {IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{ye2019preserving,
|
||||
title = {Preserving ON-OFF privacy for past and future requests},
|
||||
author = {Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
|
||||
booktitle = {2019 IEEE Information Theory Workshop (ITW)},
|
||||
pages = {1--5},
|
||||
year = {2019},
|
||||
organization = {IEEE}
|
||||
}
|
||||
|
||||
@article{ye2020off,
|
||||
title = {ON-OFF Privacy in the Presence of Correlation},
|
||||
author = {Ye, Fangwei and Naim, Carolina and Rouayheb, Salim El},
|
||||
journal = {arXiv preprint arXiv:2004.04186},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@article{ye2021off,
|
||||
title = {ON-OFF Privacy Against Correlation Over Time},
|
||||
author = {Ye, Fangwei and Naim, Carolina and El Rouayheb, Salim},
|
||||
journal = {IEEE Transactions on Information Forensics and Security},
|
||||
volume = {16},
|
||||
pages = {2104--2117},
|
||||
year = {2021},
|
||||
publisher = {IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{yuan2010t,
|
||||
title = {T-drive: driving directions based on taxi trajectories},
|
||||
author = {Yuan, Jing and Zheng, Yu and Zhang, Chengyang and Xie, Wenlei and Xie, Xing and Sun, Guangzhong and Huang, Yan},
|
||||
|
@ -354,3 +354,21 @@ The Perturber consumes the incoming data stream, adds noise $\varepsilon_p$, whi
|
||||
The data-adaptive Grouper consumes the original stream and partitions the data into well-approximated regions using, also part of the available privacy budget, $\varepsilon_g$.
|
||||
Finally, a query specific Smoother combines the independent information produced by the Perturber and the Grouper, and performs post-processing by calculating the final estimates of the Perturber's values for each partition created by the Grouper at each timestamp.
|
||||
The combination of the Perturber and the Grouper follows the sequential composition and post-processing properties of differential privacy, thus, the resulting algorithm satisfies ($\varepsilon_p + \varepsilon_g$)-differential privacy.
|
||||
|
||||
% Temporally Discounted Differential Privacy for Evolving Datasets on an Infinite Horizon
|
||||
% - statistical
|
||||
% - infinite
|
||||
% - streaming
|
||||
% - linkage
|
||||
% - -
|
||||
% - differential privacy
|
||||
% - perturbation (Laplace)
|
||||
\hypertarget{farokhi2020temporally}{Farokhi}~\cite{farokhi2020temporally} proposed a relaxation of the user-level protection of differential privacy based on the discounted utility theory in the economics literature.
|
||||
More specifically, at each timestamp, the scheme of temporally discounted differential privacy assigns different weights to the privacy budgets that have been invested in previous timestamps.
|
||||
These weights decrease the further that we observe in the past.
|
||||
The author implements an exponentially and a hyperbolic discounted scheme.
|
||||
In the former, the discount factor, which is positive and less than $1$, and in the latter, the discounting coefficient, which is greater or equal to $0$, allows the adjustment of temporal discounting.
|
||||
Increasing the discount factor offers stronger privacy protection, equivalent to that of user-level.
|
||||
Whereas, increasing the discount coefficient resembles the behavior of event-level differential privacy.
|
||||
Selecting a suitable value for the privacy budget and the discount parameter allows for bounding the overall privacy loss in an infinite observation scenario.
|
||||
The assumption that all users discount previous data releases limits the applicability of the the current scheme in real-world scenarios.
|
||||
|
Loading…
Reference in New Issue
Block a user