2021-10-09 13:27:16 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import sys
|
|
|
|
sys.path.insert(1, '../lib')
|
|
|
|
import argparse
|
|
|
|
import gdp
|
|
|
|
import lmdk_lib
|
|
|
|
import math
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
# Number of timestamps
|
|
|
|
seq = lmdk_lib.get_seq(1, args.time)
|
|
|
|
# Distribution type
|
|
|
|
dist_type = np.array(range(0, 4))
|
|
|
|
# Number of landmarks
|
|
|
|
lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
|
|
|
|
|
|
|
|
markers = [
|
|
|
|
'^', # Symmetric
|
|
|
|
'v', # Skewed
|
|
|
|
'D', # Bimodal
|
|
|
|
's' # Uniform
|
|
|
|
]
|
|
|
|
|
|
|
|
# Initialize plot
|
|
|
|
lmdk_lib.plot_init()
|
|
|
|
# The x axis
|
|
|
|
x_i = np.arange(len(lmdk_n))
|
|
|
|
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
|
|
|
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
|
|
|
plt.xlim(x_i.min(), x_i.max())
|
|
|
|
# The y axis
|
|
|
|
plt.ylabel('Normalized average distance') # Set y axis label.
|
|
|
|
plt.yscale('log')
|
|
|
|
plt.ylim(.001, 1)
|
|
|
|
# Logging
|
|
|
|
print('Average distance', end='', flush=True)
|
|
|
|
for d_i, d in enumerate(dist_type):
|
|
|
|
avg_dist = np.zeros(len(lmdk_n))
|
|
|
|
# Logging
|
|
|
|
print('.', end='', flush=True)
|
|
|
|
for i, n in enumerate(lmdk_n):
|
2022-02-18 19:15:59 +01:00
|
|
|
for r in range(args.iter):
|
2021-10-09 13:27:16 +02:00
|
|
|
# Generate landmarks
|
|
|
|
lmdks = lmdk_lib.get_lmdks(seq, n, d)
|
|
|
|
# Calculate average distance
|
|
|
|
avg_cur = 0
|
|
|
|
for t in seq:
|
|
|
|
t_prv, t_nxt = gdp.get_limits(t, seq, lmdks)
|
|
|
|
avg_cur += (abs(t - t_prv) - 1 + abs(t - t_nxt) - 1 )/len(seq)
|
|
|
|
# Normalized average based on repetitions
|
2022-02-18 19:15:59 +01:00
|
|
|
avg_dist[i] += avg_cur/args.iter
|
2021-10-09 13:27:16 +02:00
|
|
|
# Rescaling (min-max normalization)
|
|
|
|
# https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)
|
|
|
|
avg_dist = (avg_dist - avg_dist.min())/(avg_dist.max() - avg_dist.min())
|
|
|
|
# Normalize for log scale
|
|
|
|
if avg_dist[len(avg_dist) - 1] == 0:
|
|
|
|
avg_dist[len(avg_dist) - 1] = .001
|
|
|
|
# Set label
|
|
|
|
label = lmdk_lib.dist_type_to_str(d_i)
|
|
|
|
if d_i == 1:
|
|
|
|
label = 'Skewed'
|
|
|
|
# Plot line
|
|
|
|
plt.plot(
|
|
|
|
x_i,
|
|
|
|
avg_dist,
|
|
|
|
label=label,
|
|
|
|
marker=markers[d_i],
|
|
|
|
markersize=lmdk_lib.marker_size,
|
|
|
|
markeredgewidth=0,
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
|
|
|
# Plot legend
|
|
|
|
lmdk_lib.plot_legend()
|
|
|
|
# Show plot
|
|
|
|
# plt.show()
|
|
|
|
# Save plot
|
|
|
|
lmdk_lib.save_plot(str('../../rslt/avg_dist/' + 'avg-dist' + '.pdf'))
|
|
|
|
print(' [OK]', flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
Parse arguments.
|
|
|
|
|
|
|
|
Optional:
|
2022-02-18 19:15:59 +01:00
|
|
|
iter - The total iterations.
|
2021-10-09 13:27:16 +02:00
|
|
|
time - The time limit of the sequence.
|
|
|
|
'''
|
|
|
|
def parse_args():
|
|
|
|
# Create argument parser.
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
# Mandatory arguments.
|
|
|
|
|
|
|
|
# Optional arguments.
|
2022-02-18 19:15:59 +01:00
|
|
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
2021-10-09 13:27:16 +02:00
|
|
|
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
|
|
|
|
|
|
|
|
# Parse arguments.
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
try:
|
|
|
|
args = parse_args()
|
|
|
|
start_time = time.time()
|
|
|
|
main(args)
|
|
|
|
end_time = time.time()
|
|
|
|
print('##############################')
|
|
|
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
|
|
|
print('##############################')
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print('Interrupted by user.')
|
|
|
|
exit()
|