#!/usr/bin/env python3 import sys sys.path.insert(1, '../lib') import argparse import gdp import lmdk_lib import math from matplotlib import pyplot as plt import numpy as np import os import time def main(args): # Number of timestamps seq = lmdk_lib.get_seq(1, args.time) # Distribution type dist_type = np.array(range(0, 4)) # Number of landmarks lmdk_n = np.array(range(0, args.time + 1, int(args.time/5))) markers = [ '^', # Symmetric 'v', # Skewed 'D', # Bimodal 's' # Uniform ] # Initialize plot lmdk_lib.plot_init() # The x axis x_i = np.arange(len(lmdk_n)) plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int)) plt.xlabel('Landmarks (%)') # Set x axis label. plt.xlim(x_i.min(), x_i.max()) # The y axis plt.ylabel('Normalized average distance') # Set y axis label. plt.yscale('log') plt.ylim(.001, 1) # Logging print('Average distance', end='', flush=True) for d_i, d in enumerate(dist_type): avg_dist = np.zeros(len(lmdk_n)) # Logging print('.', end='', flush=True) for i, n in enumerate(lmdk_n): for r in range(args.iter): # Generate landmarks lmdks = lmdk_lib.get_lmdks(seq, n, d) # Calculate average distance avg_cur = 0 for t in seq: t_prv, t_nxt = gdp.get_limits(t, seq, lmdks) avg_cur += (abs(t - t_prv) - 1 + abs(t - t_nxt) - 1 )/len(seq) # Normalized average based on repetitions avg_dist[i] += avg_cur/args.iter # Rescaling (min-max normalization) # https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization) avg_dist = (avg_dist - avg_dist.min())/(avg_dist.max() - avg_dist.min()) # Normalize for log scale if avg_dist[len(avg_dist) - 1] == 0: avg_dist[len(avg_dist) - 1] = .001 # Set label label = lmdk_lib.dist_type_to_str(d_i) if d_i == 1: label = 'Skewed' # Plot line plt.plot( x_i, avg_dist, label=label, marker=markers[d_i], markersize=lmdk_lib.marker_size, markeredgewidth=0, linewidth=lmdk_lib.line_width ) # Plot legend lmdk_lib.plot_legend() # Show plot # plt.show() # Save plot lmdk_lib.save_plot(str('../../rslt/avg_dist/' + 'avg-dist' + '.pdf')) print(' [OK]', flush=True) ''' Parse arguments. Optional: iter - The total iterations. time - The time limit of the sequence. ''' def parse_args(): # Create argument parser. parser = argparse.ArgumentParser() # Mandatory arguments. # Optional arguments. parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1) parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100) # Parse arguments. args = parser.parse_args() return args if __name__ == '__main__': try: args = parse_args() start_time = time.time() main(args) end_time = time.time() print('##############################') print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time)))) print('##############################') except KeyboardInterrupt: print('Interrupted by user.') exit()