209 lines
5.3 KiB
Python
209 lines
5.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
sys.path.insert(1, '../lib')
|
|
import argparse
|
|
import ast
|
|
from datetime import datetime
|
|
from geopy.distance import distance
|
|
import lmdk_bgt
|
|
import lmdk_lib
|
|
import lmdk_sel
|
|
import exp_mech
|
|
import math
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
import time
|
|
|
|
|
|
def main(args):
|
|
# User's consumption
|
|
seq = lmdk_lib.load_data(args, 'cons')
|
|
# The name of the dataset
|
|
d = 'HUE'
|
|
# The landmarks percentages
|
|
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
|
# Landmarks' thresholds
|
|
lmdks_th = [0, .54, .68, .88, 1.12, 10]
|
|
# The privacy budget
|
|
epsilon = 1.0
|
|
|
|
# Number of methods
|
|
n = 3
|
|
# Width of bars
|
|
bar_width = 1/(n + 1)
|
|
# The x axis
|
|
x_i = np.arange(len(lmdks_pct))
|
|
x_margin = bar_width*(n/2 + 1)
|
|
|
|
print('\n##############################', d, '\n')
|
|
|
|
# Initialize plot
|
|
lmdk_lib.plot_init()
|
|
# The x axis
|
|
plt.xticks(x_i, np.array(lmdks_pct, int))
|
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
|
# The y axis
|
|
plt.ylabel('Mean absolute error (kWh)') # Set y axis label.
|
|
plt.yscale('log')
|
|
plt.ylim(.1, 100000)
|
|
# Bar offset
|
|
x_offset = -(bar_width/2)*(n - 1)
|
|
|
|
mae_u = np.zeros(len(lmdks_pct))
|
|
mae_u_sel= np.zeros(len(lmdks_pct))
|
|
mae_s = np.zeros(len(lmdks_pct))
|
|
mae_s_sel = np.zeros(len(lmdks_pct))
|
|
mae_a = np.zeros(len(lmdks_pct))
|
|
mae_a_sel = np.zeros(len(lmdks_pct))
|
|
mae_evt = 0
|
|
mae_usr = 0
|
|
|
|
for i, pct in enumerate(lmdks_pct):
|
|
# Find landmarks
|
|
lmdks = seq[seq[:, 1] < lmdks_th[i]]
|
|
|
|
for _ in range(args.iter):
|
|
|
|
lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
|
|
|
|
# Skip
|
|
rls_data_s, _ = lmdk_bgt.skip_cons(seq, lmdks, eps_out)
|
|
mae_s[i] += (lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter)*100
|
|
rls_data_s_sel, _ = lmdk_bgt.skip_cons(seq, lmdks_sel, eps_out)
|
|
mae_s_sel[i] += (lmdk_bgt.mae_cons(seq, rls_data_s_sel)/args.iter)*100
|
|
|
|
# Uniform
|
|
rls_data_u, _ = lmdk_bgt.uniform_cons(seq, lmdks, eps_out)
|
|
mae_u[i] += (lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter)*100
|
|
rls_data_u_sel, _ = lmdk_bgt.uniform_cons(seq, lmdks_sel, eps_out)
|
|
mae_u_sel[i] += (lmdk_bgt.mae_cons(seq, rls_data_u_sel)/args.iter)*100
|
|
|
|
# Adaptive
|
|
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, eps_out, .5, .5)
|
|
mae_a[i] += (lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter)*100
|
|
rls_data_a_sel, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks_sel, eps_out, .5, .5)
|
|
mae_a_sel[i] += (lmdk_bgt.mae_cons(seq, rls_data_a_sel)/args.iter)*100
|
|
|
|
# Calculate once
|
|
if pct == lmdks_pct[0]:
|
|
# Event
|
|
rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
|
|
mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
|
|
elif pct == lmdks_pct[-1]:
|
|
# User
|
|
rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
|
|
mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
|
|
|
|
plt.axhline(
|
|
y = mae_evt,
|
|
color = '#212121',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
|
|
|
plt.axhline(
|
|
y = mae_usr,
|
|
color = '#616161',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
|
|
|
# Plot bars
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_s_sel,
|
|
bar_width,
|
|
label='Skip',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
plt.plot(
|
|
x_i + x_offset,
|
|
mae_s,
|
|
marker='_',
|
|
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
|
|
markeredgewidth=lmdk_lib.line_width,
|
|
markeredgecolor='#bdbdbd',
|
|
linestyle='none',
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_u_sel,
|
|
bar_width,
|
|
label='Uniform',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
plt.plot(
|
|
x_i + x_offset,
|
|
mae_u,
|
|
marker='_',
|
|
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
|
|
markeredgewidth=lmdk_lib.line_width,
|
|
markeredgecolor='#bdbdbd',
|
|
linestyle='none',
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_a_sel,
|
|
bar_width,
|
|
label='Adaptive',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
plt.plot(
|
|
x_i + x_offset,
|
|
mae_a,
|
|
marker='_',
|
|
markersize=lmdk_lib.marker_size + lmdk_lib.line_width,
|
|
markeredgewidth=lmdk_lib.line_width,
|
|
markeredgecolor='#bdbdbd',
|
|
linestyle='none',
|
|
)
|
|
|
|
path = str('../../rslt/bgt_cmp/' + d)
|
|
# Plot legend
|
|
lmdk_lib.plot_legend()
|
|
# Show plot
|
|
# plt.show()
|
|
# Save plot
|
|
lmdk_lib.save_plot(path + '-sel-cmp.pdf')
|
|
print('[OK]', flush=True)
|
|
|
|
|
|
def parse_args():
|
|
'''
|
|
Parse arguments.
|
|
|
|
Optional:
|
|
res - The results archive file.
|
|
iter - The total iterations.
|
|
'''
|
|
# Create argument parser.
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Mandatory arguments.
|
|
|
|
# Optional arguments.
|
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
|
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
|
|
|
# Parse arguments.
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
start_time = time.time()
|
|
main(parse_args())
|
|
end_time = time.time()
|
|
print('##############################')
|
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
|
print('##############################')
|
|
except KeyboardInterrupt:
|
|
print('Interrupted by user.')
|
|
exit()
|