155 lines
7.5 KiB
TeX
155 lines
7.5 KiB
TeX
\subsection{Protecting {\thethings}}
|
|
\label{subsec:lmdk-sel-sol}
|
|
|
|
The main idea of the privacy-preserving {\thething} selection component is to privately select extra {\thething} event timestamps, i.e.,~dummy {\thethings}, from the set of timestamps $T /\ L$ of the time series $S_T$ and add them to the original {\thething} set $L$.
|
|
Selecting extra events, on top of the actual {\thethings}, as dummy {\thethings} can render actual ones indistinguishable.
|
|
The goal is to select a list of sets with additional timestamps from a series of events at timestamps $T$ for a set of {\thethings} at $L \subseteq T$.
|
|
Thus, we create a new set $L'$ such that $L \subset L' \subseteq T$.
|
|
|
|
First, we generate a set of dummy {\thething} set options by adding regular event timestamps from $T /\ L$ to $L$ (Section~\ref{subsec:lmdk-set-opts}).
|
|
Then, we utilize the exponential mechanism, with a utility function that calculates an indicator for each of the options in the set based on how much it differs from the original {\thething} set $L$, and randomly select one of the options (Section~\ref{subsec:lmdk-opt-sel}).
|
|
This process provides an extra layer of privacy protection to {\thethings}, and thus allows the release, and thereafter processing, of {\thething} timestamps.
|
|
|
|
% We utilize the exponential mechanism with a utility function that calculates an indicator for each of the options in the set that we selected in the previous step.
|
|
% The utility depends on the positioning of the {\thething} timestamps of an option in the series, e.g.,~the distance from the previous/next {\thething}, the distance from the start/end of the series, etc.
|
|
|
|
|
|
\subsubsection{{\Thething} set options generation}
|
|
\label{subsec:lmdk-set-opts}
|
|
|
|
Algorithms~\ref{algo:lmdk-sel-opt} and \ref{algo:lmdk-sel-heur} approach this problem with an optimal and heuristic methodology, respectively.
|
|
Function \evalSeq evaluates the result of the union of $L$ and a timestamp combination from $T \setminus L$ by, e.g.,~estimating the standard deviation of all the distances from the previous/next {\thething}.
|
|
\getOpts returns all the possible \emph{valid} sets of combinations \opt such that larger options contain all of the timestamps that are present in smaller ones.
|
|
Each combination contains a set of timestamps with sizes $\left|L\right| + 1, \left|L\right| + 2, \dots, \left|T\right|$, where each one of them is a combination of $L$ with $x \in [1, \left|T\right| - \left|L\right|]$ timestamps from $T$.
|
|
|
|
\paragraph{Optimal}
|
|
Algorithm~\ref{algo:lmdk-sel-opt}, between Lines~{\ref{algo:lmdk-sel-opt-for-each}--\ref{algo:lmdk-sel-opt-end}} evaluates each option in \opts.
|
|
It finds the option that is the most \emph{similar} to the original (Lines~{\ref{algo:lmdk-sel-opt-comparison}-\ref{algo:lmdk-sel-opt-end}}), i.e.,~the option that has an evaluation that differs the least from that of the sequence $T$ with {\thethings} $L$.
|
|
|
|
\begin{algorithm}
|
|
\caption{Optimal dummy {\thething} set options generation}
|
|
\label{algo:lmdk-sel-opt}
|
|
|
|
\DontPrintSemicolon
|
|
|
|
\KwData{$T, L$}
|
|
|
|
\SetKwInput{KwData}{Input}
|
|
|
|
\KwResult{\optim}
|
|
\BlankLine
|
|
|
|
% Evaluate the original
|
|
\evalOrig $\leftarrow$ \evalSeq{$T, \emptyset, L$}\;
|
|
|
|
% Get all possible option combinations
|
|
\opts $\leftarrow$ \getOpts{$T, L$}\;
|
|
|
|
% Track the minimum (best) evaluation
|
|
\diffMin $\leftarrow$ $\infty$\;
|
|
|
|
% Track the optimal sequence (the one with the best evaluation)
|
|
\optim $\leftarrow$ $[]$\;
|
|
|
|
\ForEach{\opt $\in$ \opts}{ \label{algo:lmdk-sel-opt-for-each}
|
|
\evalCur $\leftarrow 0$\;
|
|
\ForEach{\opti $\in$ \opt}{
|
|
\evalCur $\leftarrow$ \evalCur $+$ \evalSeq{$T, \opti, L$}/\#\opt\; \label{algo:lmdk-sel-opt-comparison}
|
|
}
|
|
% Compare with current optimal
|
|
\diffCur $\leftarrow \left|\evalCur - \evalOrig\right|$\;
|
|
\If{\diffCur $<$ \diffMin}{
|
|
\diffMin $\leftarrow$ \diffCur\;
|
|
\optim $\leftarrow$ \opt\;
|
|
}
|
|
} \label{algo:lmdk-sel-opt-end}
|
|
\Return{\optim}
|
|
\end{algorithm}
|
|
|
|
Algorithm~\ref{algo:lmdk-sel-opt} guarantees to return the optimal set of dummy {\thethings} with regard to the original set $L$.
|
|
However, it is rather costly in terms of complexity: given $n$ regular events and a combination of size $r$, it requires $\mathcal{O}(C(n, r) + 2^C(n, r))$ time and $\mathcal{O}(r*C(n, r))$ space.
|
|
Next, we present a heuristic solution with improved time and space requirements.
|
|
|
|
|
|
\paragraph{Heuristic}
|
|
Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology.
|
|
At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $T \setminus L$.
|
|
|
|
\begin{algorithm}
|
|
\caption{Heuristic dummy {\thething} set options selection}
|
|
\label{algo:lmdk-sel-heur}
|
|
|
|
\DontPrintSemicolon
|
|
|
|
\KwData{$T, L$}
|
|
\KwResult{\optim}
|
|
\BlankLine
|
|
|
|
% Evaluate the original
|
|
\evalOrig $\leftarrow$ \evalSeq{$T, \emptyset, L$}\;
|
|
|
|
% Get all possible option combinations
|
|
\optim $\leftarrow$ $[]$\;
|
|
|
|
$L' \leftarrow L$\;
|
|
|
|
\While{$L' \neq T$}{\label{algo:lmdk-sel-heur-while}
|
|
% Track the minimum (best) evaluation
|
|
\diffMin $\leftarrow$ $\infty$\;
|
|
|
|
\optimi $\leftarrow$ Null\;
|
|
% Find the combinations for one more point
|
|
\ForEach{\reg $\in T \setminus L'$}{
|
|
|
|
% Evaluate current
|
|
\evalCur $\leftarrow$ \evalSeq{$T, \reg, L'$}\; \label{algo:lmdk-sel-heur-comparison}
|
|
|
|
% Compare evaluations
|
|
\diffCur $\leftarrow$ $\left|\evalCur - \evalOrig\right|$\;
|
|
|
|
\If{\diffCur $<$ \diffMin}{
|
|
\diffMin $\leftarrow$ \diffCur\;
|
|
\optimi $\leftarrow$ \reg\;
|
|
}\label{algo:lmdk-sel-heur-comparison-end}
|
|
}
|
|
|
|
% Save new point to landmarks
|
|
$L'.add(\optimi)$\;
|
|
|
|
% Add new option
|
|
\optim.append($L' \setminus L$)\;
|
|
}\label{algo:lmdk-sel-heur-end}
|
|
|
|
\Return{\optim}
|
|
\end{algorithm}
|
|
|
|
Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}).
|
|
This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$L' = T$.
|
|
|
|
In terms of complexity: given $n$ regular events it requires $\mathcal{O}(n^2)$ time and space.
|
|
Note that the reverse heuristic approach, i.e.,~starting with $T$ {\thethings} and removing until $L$, performs similarly with Algorithm~\ref{algo:lmdk-sel-heur}.
|
|
|
|
|
|
|
|
\mk{WIP: Histograms}
|
|
|
|
|
|
\subsubsection{Privacy-preserving option selection}
|
|
\label{subsec:lmdk-opt-sel}
|
|
|
|
\mk{WIP}
|
|
|
|
% Nearby events
|
|
Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}.
|
|
Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall.
|
|
This leads to worse data utility.
|
|
|
|
% Depending on the {\thething} discovery technique
|
|
The values of events near a {\thething} are usually similar to that of the latter.
|
|
Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget.
|
|
Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility.
|
|
|
|
% Distant events
|
|
However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events.
|
|
Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.
|