251 lines
7.3 KiB
Python
251 lines
7.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
sys.path.insert(1, 'code/lib')
|
|
import argparse
|
|
from datetime import datetime
|
|
from geopy.distance import distance
|
|
import lmdk_bgt
|
|
import lmdk_lib
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
import time
|
|
|
|
|
|
def main(args):
|
|
# The data files
|
|
data_files = {
|
|
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
|
|
'Geolife': '/home/manos/Cloud/Data/Geolife/Results.zip'
|
|
}
|
|
# Data related info
|
|
data_info = {
|
|
'T-drive': {
|
|
'uid': 2,
|
|
'lmdks': {
|
|
0: {'dist': 0, 'per': 1000}, # 0.0%
|
|
20: {'dist': 2095, 'per': 30}, # 19.6%
|
|
40: {'dist': 2790, 'per': 30}, # 40.2%
|
|
60: {'dist': 3590, 'per': 30}, # 59.9%
|
|
80: {'dist': 4825, 'per': 30}, # 79.4%
|
|
100: {'dist': 10350, 'per': 30} # 100.0%
|
|
}
|
|
},
|
|
'Geolife': {
|
|
'uid': 97,
|
|
'lmdks': {
|
|
0: {'dist': 0, 'per': 100000}, # 0.0%
|
|
20: {'dist': 205, 'per': 30}, # 19.8%
|
|
40: {'dist': 450, 'per': 30}, # 41.7%
|
|
60: {'dist': 725, 'per': 30}, # 59.2%
|
|
80: {'dist': 855, 'per': 30}, # 82.1%
|
|
100: {'dist': 50000, 'per': 30} # 100.0%
|
|
}
|
|
}
|
|
}
|
|
# The data sets
|
|
data_sets = {}
|
|
# Load data sets
|
|
for df in data_files:
|
|
args.res = data_files[df]
|
|
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
|
|
# Geo-I configuration
|
|
# epsilon = level/radius
|
|
# Radius is in meters
|
|
bgt_conf = [
|
|
{'epsilon': 1},
|
|
# {'label': 'ln(2)/200', 'epsilon': 0.0035, 'level': 0.69314718056, 'radius': 200},
|
|
# {'label': 'ln(4)/200', 'epsilon': 0.0069, 'level': 1.38629436112, 'radius': 200},
|
|
# {'label': 'ln(6)/200', 'epsilon': 0.0090, 'level': 1.79175946923, 'radius': 200}
|
|
]
|
|
|
|
# Number of methods
|
|
n = 6
|
|
# Width of bars
|
|
bar_width = 1/(n + 1)
|
|
# The x axis
|
|
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
|
|
x_margin = bar_width*(n/2 + 1)
|
|
|
|
for d in data_sets:
|
|
# d = 'T-drive'
|
|
# d = 'Geolife'
|
|
print('\n##############################', d, '\n')
|
|
args.res = data_files[d]
|
|
data = data_sets[d]
|
|
# Truncate trajectory according to arguments
|
|
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
|
|
|
|
# Initialize plot
|
|
lmdk_lib.plot_init()
|
|
# The x axis
|
|
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
|
|
plt.xlabel('Landmarks percentage') # Set x axis label.
|
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
|
# The y axis
|
|
plt.ylabel('Mean absolute error (m)') # Set y axis label.
|
|
plt.yscale('log')
|
|
plt.ylim(1, 10000000)
|
|
# Bar offset
|
|
x_offset = -(bar_width/2)*(n - 1)
|
|
|
|
mae_u = np.zeros(len(data_info[d]['lmdks']))
|
|
mae_s = np.zeros(len(data_info[d]['lmdks']))
|
|
mae_a = np.zeros(len(data_info[d]['lmdks']))
|
|
mae_r = np.zeros(len(data_info[d]['lmdks']))
|
|
mae_d = np.zeros(len(data_info[d]['lmdks']))
|
|
mae_i = np.zeros(len(data_info[d]['lmdks']))
|
|
for i, lmdk in enumerate(data_info[d]['lmdks']):
|
|
# Find landmarks
|
|
args.dist = data_info[d]['lmdks'][lmdk]['dist']
|
|
args.per = data_info[d]['lmdks'][lmdk]['per']
|
|
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
|
|
# Print stats
|
|
lmdk_lib.lmdks_stats(args, lmdks)
|
|
# # Find long enough sequences
|
|
# usrs = np.unique(data[:,0])
|
|
# for usr_i, usr in enumerate(usrs):
|
|
# traj = data[data[:,0]==usr, :]
|
|
# if(len(traj)) >= 1000 and len(traj) < 2000:
|
|
# print(usr, len(traj))
|
|
for bgt in bgt_conf:
|
|
for _ in range(args.iter):
|
|
# Skip
|
|
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, bgt['epsilon'])
|
|
mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
|
|
|
|
# Uniform
|
|
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
|
|
mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
|
|
|
|
# Adaptive
|
|
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, bgt['epsilon'], .5, .5)
|
|
mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
|
|
|
|
# Sample
|
|
rls_data_r, _, _ = lmdk_bgt.sample(seq, lmdks, bgt['epsilon'])
|
|
mae_r[i] += lmdk_bgt.mae(seq, rls_data_r)/args.iter
|
|
|
|
# Discount
|
|
rls_data_d, _, _ = lmdk_bgt.discount(seq, lmdks, bgt['epsilon'])
|
|
mae_d[i] += lmdk_bgt.mae(seq, rls_data_d)/args.iter
|
|
|
|
# Incremental
|
|
rls_data_i, _, _ = lmdk_bgt.incremental(seq, lmdks, bgt['epsilon'], .5)
|
|
mae_i[i] += lmdk_bgt.mae(seq, rls_data_i)/args.iter
|
|
|
|
# print(
|
|
# '\nEpsilon : %f\n'
|
|
# 'Sampled : %d%% (%d/%d)\n'
|
|
# 'Landmarks: %d%% (%d/%d)\n'
|
|
# %(bgt['epsilon'], 100*(len(seq) - skipped)/len(seq), len(seq) - skipped, len(seq), 100*len(lmdks)/len(seq), len(lmdks), len(seq))
|
|
# )
|
|
# s, l = lmdk_lib.simplify_data(seq, lmdks)
|
|
# # Validate the process
|
|
# lmdk_bgt.validate_bgts(s, l, bgt['epsilon'], bgts)
|
|
|
|
# # Analysis
|
|
# lmdk_bgt.utility_analysis(seq, lmdks, rls_data, bgt['epsilon'])
|
|
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_s,
|
|
bar_width,
|
|
label='Skip',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
# Plot bars
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_u,
|
|
bar_width,
|
|
label='Uniform',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_a,
|
|
bar_width,
|
|
label='Adaptive',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_r,
|
|
bar_width,
|
|
label='Sample',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_d,
|
|
bar_width,
|
|
label='Discount',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
plt.bar(
|
|
x_i + x_offset,
|
|
mae_i,
|
|
bar_width,
|
|
label='Incremental',
|
|
linewidth=lmdk_lib.line_width
|
|
)
|
|
x_offset += bar_width
|
|
|
|
path = str('rslt/bgt_cmp/' + d)
|
|
# Plot legend
|
|
lmdk_lib.plot_legend()
|
|
# Show plot
|
|
# plt.show()
|
|
# Save plot
|
|
lmdk_lib.save_plot(path + '.pdf')
|
|
print('[OK]', flush=True)
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
'''
|
|
Parse arguments.
|
|
|
|
Optional:
|
|
dist - The coordinates distance threshold in meters.
|
|
per - The timestaps period threshold in mimutes.
|
|
time - The total timestamps.
|
|
iter - The total iterations.
|
|
'''
|
|
# Create argument parser.
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Mandatory arguments.
|
|
|
|
# Optional arguments.
|
|
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
|
|
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
|
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
|
|
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
|
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
|
|
|
# Parse arguments.
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
start_time = time.time()
|
|
main(parse_args())
|
|
end_time = time.time()
|
|
print('##############################')
|
|
print('Time : %.4fs' % (end_time - start_time))
|
|
print('##############################')
|
|
except KeyboardInterrupt:
|
|
print('Interrupted by user.')
|
|
exit()
|