#!/usr/bin/env python3 import sys sys.path.insert(1, '../lib') import argparse import lmdk_lib import lmdk_sel import exp_mech import numpy as np import os from matplotlib import pyplot as plt import time def main(args): # Privacy goal epsilon = [.01, .1, 1.0, 10.0, 100.0] # Number of timestamps seq = lmdk_lib.get_seq(1, args.time) # Distribution type dist_type = np.array(range(-1, 4)) # Number of landmarks lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5))) # Width of bars bar_width = 1/(len(epsilon) + 1) # The x axis x_i = np.arange(len(lmdk_n)) x_margin = bar_width*(len(epsilon)/2 + 1) for d_i, d in enumerate(dist_type): # Logging title = lmdk_lib.dist_type_to_str(d) + ' landmark distribution' print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True) # Initialize plot lmdk_lib.plot_init() # The x axis plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int)) plt.xlabel('Landmarks (%)') # Set x axis label. plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin) # The y axis plt.ylabel('Mean absolute error') # Set y axis label. # plt.ylim(0, len(seq)/3) # Bar offset x_offset = -(bar_width/2)*(len(epsilon) - 1) for e_i, e in enumerate(epsilon): mae = np.zeros(len(lmdk_n)) for n_i, n in enumerate(lmdk_n): for r in range(args.reps): lmdks = lmdk_lib.get_lmdks(seq, n, d) hist, h = lmdk_lib.get_hist(seq, lmdks) res = np.zeros([len(hist)]) # Split sequence in parts of size h pt_idx = [] for idx in range(h, len(seq), h): pt_idx.append(idx) seq_pt = np.split(seq, pt_idx) for pt_i, pt in enumerate(seq_pt): # Find this part's landmarks lmdks_pt = np.intersect1d(pt, lmdks) # Find possible options for this part opts = lmdk_sel.get_opts_from_top_h(pt, lmdks_pt) # Turn part to histogram hist_pt, _ = lmdk_lib.get_hist(pt, lmdks_pt) # Get an option for this part if len(opts) > 1: res_pt, _ = exp_mech.exponential(hist_pt, opts, exp_mech.score, 1.0, e) elif len(opts) > 0: res_pt = opts[0] # Merge options of all parts res[pt_i] = np.sum(res_pt) # Calculate MAE mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps # Plot bar for current epsilon plt.bar( x_i + x_offset, mae, bar_width, label=u'\u03B5 = ' + str("{:.0e}".format(e)), linewidth=lmdk_lib.line_width ) # Change offset for next bar x_offset += bar_width path = str('../../rslt/lmdk_sel/' + title) # Plot legend lmdk_lib.plot_legend() # Show plot # plt.show() # Save plot lmdk_lib.save_plot(path + '.pdf') print('[OK]', flush=True) ''' Parse arguments. Optional: reps - The number of repetitions. time - The time limit of the sequence. ''' def parse_args(): # Create argument parser. parser = argparse.ArgumentParser() # Mandatory arguments. # Optional arguments. parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1) parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100) # Parse arguments. args = parser.parse_args() return args if __name__ == '__main__': try: start_time = time.time() main(parse_args()) end_time = time.time() print('##############################') print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time)))) print('##############################') except KeyboardInterrupt: print('Interrupted by user.') exit()