#!/usr/bin/env python3 import sys sys.path.insert(1, '../lib') import argparse from datetime import datetime from geopy.distance import distance import lmdk_bgt import lmdk_lib import lmdk_sel import exp_mech import numpy as np from matplotlib import pyplot as plt import time def main(args): # The data files data_files = { 'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip', } # Data related info data_info = { 'T-drive': { 'uid': 2, 'lmdks': { 0: {'dist': 0, 'per': 1000}, # 0.0% 20: {'dist': 2095, 'per': 30}, # 19.6% 40: {'dist': 2790, 'per': 30}, # 40.2% 60: {'dist': 3590, 'per': 30}, # 59.9% 80: {'dist': 4825, 'per': 30}, # 79.4% 100: {'dist': 10350, 'per': 30} # 100.0% } } } # The data sets data_sets = {} # Load data sets for df in data_files: args.res = data_files[df] data_sets[df] = lmdk_lib.load_data(args, 'usrs_data') # Geo-I configuration # epsilon = level/radius # Radius is in meters bgt_conf = [ {'epsilon': 1}, ] eps_pct = [.01, .1, .25, .5] markers = [ '^', 'v', 'D', 's' ] # The x axis x_i = np.arange(len(list(data_info.values())[0]['lmdks'])) for d in data_sets: print('\n##############################', d, '\n') args.res = data_files[d] data = data_sets[d] # Truncate trajectory according to arguments seq = data[data[:,0]==data_info[d]['uid'], :][:args.time] # Initialize plot lmdk_lib.plot_init() # The x axis plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int)) plt.xlabel('Landmarks (%)') # Set x axis label. plt.xlim(x_i.min(), x_i.max()) # The y axis plt.ylabel('Mean absolute error (m)') # Set y axis label. mae_evt = 0 mae_usr = 0 for i_e, e in enumerate(eps_pct): mae = np.zeros(len(data_info[d]['lmdks'])) for i, lmdk in enumerate(data_info[d]['lmdks']): # Find landmarks args.dist = data_info[d]['lmdks'][lmdk]['dist'] args.per = data_info[d]['lmdks'][lmdk]['per'] lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time] for bgt in bgt_conf: for _ in range(args.iter): lmdks_sel = lmdk_sel.find_lmdks_eps(seq, lmdks, bgt['epsilon']*e) # Uniform rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks_sel, bgt['epsilon']*(1 - e)) mae[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter # Calculate once if e == eps_pct[0] and lmdk == min(data_info[d]['lmdks']): # Event rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon']) mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter elif e == eps_pct[-1] and lmdk == max(data_info[d]['lmdks']): # User rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon']) mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter # Plot line plt.plot( x_i, mae, label='{0:.2f}'.format(e) + 'ε', marker=markers[i_e], markersize=lmdk_lib.marker_size, markeredgewidth=0, linewidth=lmdk_lib.line_width ) plt.axhline( y = mae_evt, color = '#212121', linewidth=lmdk_lib.line_width ) plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.05, 'event') plt.axhline( y = mae_usr, color = '#616161', linewidth=lmdk_lib.line_width ) plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.05, 'user') path = str('../../rslt/lmdk_sel_eps/' + d) # Plot legend lmdk_lib.plot_legend() # # Show plot # plt.show() # Save plot lmdk_lib.save_plot(path + '-sel-eps.pdf') def parse_args(): ''' Parse arguments. Optional: dist - The coordinates distance threshold in meters. per - The timestaps period threshold in mimutes. time - The total timestamps. iter - The total iterations. ''' # Create argument parser. parser = argparse.ArgumentParser() # Mandatory arguments. # Optional arguments. parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200) parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30) parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip') parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000) parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1) # Parse arguments. args = parser.parse_args() return args if __name__ == '__main__': try: start_time = time.time() main(parse_args()) end_time = time.time() print('##############################') print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time)))) print('##############################') except KeyboardInterrupt: print('Interrupted by user.') exit()