\section{Microdata} \label{sec:microdata} As observed in Table~\ref{tab:related}, privacy preserving algorithms for microdata rely on $k-$anonymity, or derivatives of it. Ganta et al.~\cite{ganta2008composition} revealed that $k$-anonymity methods are vulnerable to \emph{composition attacks}. Consequently, these attacks drew the attention of researchers, who proposed various algorithms based on $k-$anonymity, each introducing a different dimension on the problem, for instance that previous releases are known to the publisher, or that the quasi-identifiers can be formed by combining attributes in different releases. Note, however, that only one (Li et al.~\cite{li2016hybrid}) of the following works assumes \emph{independently} anonymized data sets that may not be known to the publisher in the attack model, making it more general than the rest of the works. % \subsection{Continual data} % \mk{Nothing to put here.} \subsection{Data streams} % M-invariance: towards privacy preserving re-publication of dynamic data sets \hypertarget{xiao2007m}{Xiao et al.}~\cite{xiao2007m} consider the case when a data set is (re)published in different time-shots in an update (tuple delete, insert) manner. More precisely, they address anonymization in dynamic environments by implementing m-\emph{invariance}. In a simple $k$-anonymization (or $l$-diverse) scenario the privacy of an individual that exists in two updates can be compromised by the intersection of the set of sensitive values. In contrast, an individual who exists in a series of $m$-invariant releases, is always associated with the same set of $m$ different sensitive values. To enable the publishing of $m$-invariant data sets, artificial tuples called \emph{counterfeits} may be added in a release. To minimize the noise added to the data sets, the authors provide an algorithm with two extra desiderata: minimize the counterfeits and the quasi-identifiers' generalization level. Still, the choice of adding tuples with specific sensitive values disturbs the value distribution with a direct effect on any relevant statistics analysis. % Preventing equivalence attacks in updated, anonymized data In the same update setting (insert/delete), \hypertarget{he2011preventing}{He et al.}~\cite{he2011preventing} introduce another kind of attack, namely the \emph{equivalence} attack, not taken into account by the aforementioned $m$-invariance technique. The equivalence attack allows for sets of individuals (of size $e 0$), for all possible outputs $\overrightarrow{o}$ ($\Pr[A(\overrightarrow{x}) = \overrightarrow{o}] > 0$), for all times $t$ and all sensitive contexts $s\in S$, it satisfies the condition $\Pr[X_t = s|\overrightarrow{o}] - \Pr[X_t = s] \leq \delta$. After filtering all the elements of a given stream, an output sequence for a single day is released. The process can be repeated to publish longer context streams. The utility of the system is measured as the expected number of released contexts. Letting the user to define the privacy settings requires that the user has some certain level of relative knowledge, which is not usually the case in real life. Additionally, suppressing data can sometimes disclose more information than releasing them instead, e.g.,~releasing multiple data points around a `sensitive' area (and not inside it) is going to eventually disclose the protected area. % PLP: Protecting location privacy against correlation analyze Attack in crowdsensing \hypertarget{ma2017plp}{Ma et al.}~\cite{ma2017plp} propose \emph{PLP} a crowdsensing scheme that protects location privacy against adversaries that can extract spatiotemporal correlations---modeled with CRFs---from crowdsensing data. Users' context (location, sensing data) stream is filtered while long-range dependencies among locations and reported sensing data are taken into account. Sensing data are suppressed at all sensitive locations while data at insensitive locations are reported with a certain probability defined by observing the corresponding CRF model. On the one hand, the privacy of the reported data is estimated by the difference $\delta$ between the probability that a user would be at a specific location given supplementary information versus the same probability without the extra information. On the other hand, the utility of the method depends on the total amount of reported data (more is better). An estimation algorithm searches for the optimal strategy that maximizes utility while preserving a predefined privacy threshold. Although this approach allows users to define their desired privacy prerequisites, it cannot guarantee optimal protection. \subsection{Sequential data} % Anonymizing sequential releases \hypertarget{wang2006anonymizing}{Wang and Fung}~\cite{wang2006anonymizing} address the problem of anonymously releasing different projections of the same data set, in subsequent timestamps. More precisely, the authors want to protect individual information that could be revealed from \emph{joining} various releases of the same data set. To do so, instead of locating the quasi-identifiers in a single release, the authors suggest that the identifiers may span the current and all previous releases of the (projections of the) data set. Then, the proposed method uses the join of the different releases on the common identifying attributes. The goal is to generalize the identifying attributes of the current release, given that previous releases are immutable. The generalization is performed in a top down manner, meaning that the attributes are initially over generalized, and step by step are specialized until they reach the point when predefined quality and privacy requirements are met. The privacy requirements, are the so-called $(X,Y)-privacy$ for a threshold $k$, meaning that the identifying attributes in $X$ are linked with at most $k$ sensitive values in $Y$, in the join of the previously released and current tables. The quality requirements can be tuned into the framework, whereas three alternatives are proposed: the reduction of the class entropy~\cite{quinlan2014c4,shannon2001mathematical}, the notion of distortion, and the discernibility~\cite{bayardo2005data}. The authors propose an algorithm for the release of a table $T1$ in the existence of a previous table $T2$, which takes into account the scalability and performance problems that a join among those two may entail. Still, when many previous releases exist, the complexity would remain high. % Privacy by diversity in sequential releases of databases \hypertarget{Shmueli}{Shmueli and Tassa}~\cite{shmueli2015privacy} identified the computational inefficiency of anonymously releasing a data set, taking into account previous ones, in scenarios of sequential publication. In more detail, they consider the case when in subsequent times, projections over different subsets of attributes of a table are published, and they provide an extension for attribute addition. Their algorithm can compute $l-$diverse anonymized releases (over different subsets of attributes) in parallel, by generating $l-1$ so-called \emph{fake} worlds. A fake world is generated from the base table, by randomly permutating non-identifier and sensitive values among the tuples, in such a way that minimal information loss (quality desideratum) is incurred. This is possible, partially by verifying that the permutation is done among quasi-identifiers that are similar. Then, the algorithm creates buckets of tuples with at least $l$ number of different sensitive values, in which the quasi-identifiers will then be generalized in order to achieve $l-$diversity (privacy protection desideratum). The generalization step is also conducted in a information-loss efficient way. All different releases will be $l-$diverse, because they are created assuming the same possible worlds, with which they are consistent. Tuples/attributes deletion is briefly discussed and left as open question. The paper is contrasted with a previous work~\cite{shmueli2012limiting} of the same authors, claiming that the new approach considers a stronger adversary (the adversary knows all individuals with their quasi-identifiers in the database, and not only one), and that the computation is much more efficient, as it does not have an exponential complexity w.r.t. to the number previous publications. % Differentially private trajectory data publication \hypertarget{chen2011differentially}{Chen et al.}~\cite{chen2011differentially} propose a non-interactive data-dependent sanitization algorithm to generate a differentially private release for trajectory data. First, a noisy \emph{prefix tree}, i.e.,~an ordered search tree data structure used to store an associative array, is constructed. Each node represents a possible location---a legit location from a set of locations that any user can be present in---of a trajectory and contains a perturbed count---the number of persons in the current location---with noise drawn from a Laplace distribution. The privacy budget is equally allocated to each level of the tree. At each level, and for every node, children nodes with non-zero number of trajectories are identified as \emph{non-empty} by observing noisy counts so as to continue expanding them. All children nodes are associated with disjoint subsets and thus, the parallel composition theorem of differential privacy can be applied. Therefore, all the available budget can be used for each node. An empty node is detected by injecting Laplace noise to its corresponding count and checking if it is less that a preset threshold $\theta=\frac{2\sqrt{2}}{\varepsilon / h}$. Where $\varepsilon$ is the available privacy budget and $h$ the height of the tree. To generate the sanitized database, it is necessary to traverse the prefix tree once in post-order. At each node, the number of terminated trajectories is calculated and corresponding copies of prefixes are sent to the output. During this process, some consistency constraints are taken into account to avoid erroneous trajectories due to the noise added previously. Namely, for any root-to-leaf path $p, \forall v_i \in p, |tr(v_i)| \leq |tr(v_{i+1})|$, where $v_i$ is a child of $v_{i+1}$, and for each node $v, |tr(v)| \geq \sum_{u \in children(v)} |tr(u)|$. The increase of the privacy budget results in less average relative error because less noise is added at each level. By increasing the height of the tree, the relative error initially decreases as more information is retained from the database. However, after a certain threshold, the increase of height can result in less available privacy budget at each level and thus more relative error due to the increased perturbation. % Publishing trajectories with differential privacy guarantees \hypertarget{jiang2013publishing}{Jiang et al.}~\cite{jiang2013publishing} focus on ship trajectories with known starting and terminal points. More specifically, they study several different noise addition mechanisms for publishing trajectories with differential privacy guarantees. These mechanisms include adding \emph{global} noise to the trajectory or noise to each location \emph{point} of the trajectory by sampling a noisy radius from an exponential distribution, and adding noise drawn from a Laplace distribution to each \emph{coordinate} of every location point. Upon the comparison of these different techniques, the latter offers better privacy guarantee and smaller error bound, but the resulting trajectory is noticeably distorted raising doubts about its practicality. A \emph{Sampling Distance and Direction (SDD)} mechanism is proposed to tackle the limited practicality coming from the addition of Laplace noise to the trajectory coordinates. It enables the publishing of optimal next possible trajectory point by sampling a suitable distance and direction at the current position and taking into account the ship's maximum speed constraint. The SDD mechanism outperforms other mechanisms and can maintain good utility with very high probability even while offering strong privacy guarantees. % Anonymity for continuous data publishing \hypertarget{fung2008anonymity}{Fung et al.}~\cite{fung2008anonymity} introduce the problem of privately releasing continuous \emph{incremental} data sets. The invariant of this kind of releases is that in every timestamp $T_i$, the records previously released in a timestamp $T_j$, where $j