\SetKwInput{KwResult}{Output} \SetKwData{diffCur}{diffCur} \SetKwData{diffMin}{diffMin} \SetKwData{evalCur}{evalCur} \SetKwData{evalOrig}{evalOrig} \SetKwData{evalSum}{evalSum} \SetKwData{metricCur}{metricCur} \SetKwData{metricOrig}{metricOrig} \SetKwData{opt}{opt} \SetKwData{opti}{opt$_i$} \SetKwData{optim}{optim} \SetKwData{optimi}{optim$_i$} \SetKwData{opts}{opts} \SetKwData{reg}{reg} \SetKwFunction{calcMetric}{calcMetric} \SetKwFunction{evalSeq}{evalSeq} \SetKwFunction{getCombs}{getCombs} \SetKwFunction{getOpts}{getOpts} \section{Selection of events} \label{sec:theotherthing} Given a set of {\thethings} at respective timestamps $\{l_k\}$ in a series of events at $\{t_n\}$, such that $\{l_k\} \subseteq \{t_n\}$, a data publisher might release this information by: \begin{enumerate} \item Selecting a set of options (Section~\ref{subsec:lmdk-set-opts}) consisting of different possible versions of $\{l_k\}$. \mk{`option' or `candidate'?} This could be: \begin{itemize} \item either a random set of $k$ other timestamps similar to the actual {\thething} timestamps (Section~\ref{subsec:lmdk-rnd}), \item or a set including $\{l_k\}$ and $x \in [1, n - k]$ additional dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}). \end{itemize} \item Releasing a privacy-preserving version of the {\thething} timestamps (Section~\ref{subsec:priv-opt-sel}). We utilize the exponential mechanism with a utility function that calculates an indicator for each of the options in the set that we selected in the previous step. The utility depends on the positioning of the {\thething} timestamps of an option in the series, e.g.,~the distance from the previous/next {\thething}, the distance from the start/end of the series, etc. \end{enumerate} Following this process allows the release, and thereafter processing, of {\thething} timestamps. Thus, we provide an extra layer of privacy protection when we separate {\thethings} from regular events. \subsubsection{{\Thething} set options} \label{subsec:lmdk-set-opts} This step aims to select a set of candidate {\thething} timestamps options either by randomizing the actual timestamps (Section~\ref{subsec:lmdk-rnd}), or by inserting dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}) to the actual {\thething} timestamps. \paragraph{{\Thething} randomization} \label{subsec:lmdk-rnd} A simple way to select a set of timestamps without disclosing the actual {\thethings} is by \emph{randomly} selecting an equally sized set of timestamps. The randomization of the process, as we will discuss in more detail in Section~\ref{subsec:priv-opt-sel}, will depend on the positioning of the {\thethings} in the series of events. In more detail, given a set of {\thething} timestamps $\{l_k\} \subseteq \{t_n\}$, where $\{t_n\}$ is an event sequence, we need to select all possible sets of size $k$ from $\{t_n\}$. However, the introduction of randomization could impact arbitrarily the effectiveness of non-uniform privacy-protection methods. This applies mainly in cases where we try to achieve optimal privacy-protection of {\thething} events while maximizing the utility of the data that corresponds to the rest of the series of events. As a consequence, it is possible to end up providing lower levels of protection to {\thething} data than the one necessary, i.e.,~worse than the users' privacy-protection expectations. The methodology that we present next (Section~\ref{subsec:lmdk-dum-gen}) attempts to tackle the aforementioned shortcoming. \paragraph{Dummy {\thething} generation} \label{subsec:lmdk-dum-gen} Selecting extra events, on top of the actual {\thethings}, as dummy {\thethings} can render actual ones indistinguishable. The goal is to select a list of sets with additional timestamps from a series of events at timestamps $\{t_n\}$ for a set of {\thethings} at $\{l_k\} \subseteq \{t_n\}$. Algorithms~\ref{algo:lmdk-sel-opt} and \ref{algo:lmdk-sel-heur} approach this problem with an optimal and heuristic methodology, respectively. Function \calcMetric measures an indicator for the union of $\{l_k\}$ and a timestamp combination from $\{t_n\} \setminus \{l_k\}$. Function \evalSeq evaluates the result of \calcMetric by, e.g.,~estimating the standard deviation of all the distances from the previous/next {\thething}. Function \getOpts returns all possible \emph{valid} sets of combinations \opt such that $\{l_{k+i}\} \subset \{l_{k+j}\}, \forall i, j \in [k, n] \mid i < j$, i.e.,~larger options must contain all of the timestamps that are present in smaller ones. Each combination contains a set of timestamps with sizes $k + 1, k + 2, \dots, n$, where each one of them is a combination of $\{l_k\}$ with $x \in [1, n - k]$ timestamps from $\{t_n\}$. \begin{algorithm} \caption{Optimal dummy {\thething} set options selection} \label{algo:lmdk-sel-opt} \DontPrintSemicolon \KwData{$\{t_n\}, \{l_k\}$} \SetKwInput{KwData}{Input} \KwResult{\optim} \BlankLine % Evaluate the original \metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\; \evalOrig $\leftarrow$ \evalSeq{\metricOrig}\; % Get all possible option combinations \opts $\leftarrow$ \getOpts{$\{t_n\}, \{l_k\}$}\; % Track the minimum (best) evaluation \diffMin $\leftarrow$ $\infty$\; % Track the optimal sequence (the one with the best evaluation) \optim $\leftarrow$ $[]$\; \ForEach{\opt $\in$ \opts}{\label{algo:lmdk-sel-opt-for-each} \evalSum $\leftarrow 0$\; \ForEach{\opti $\in$ \opt}{ \metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \opti, \{l_k\}$}\;\label{algo:lmdk-sel-opt-comparison} \evalSum $\leftarrow$ \evalSum $+$ \evalSeq{\metricCur}\; % Compare with current optimal \diffCur $\leftarrow \left|\evalSum/\#\opt - \evalOrig\right|$\; \If{\diffCur $<$ \diffMin}{ \diffMin $\leftarrow$ \diffCur\; \optim $\leftarrow$ \opt\; } } }\label{algo:lmdk-sel-opt-end} \Return{\optim} \end{algorithm} Algorithm~\ref{algo:lmdk-sel-opt}, in particular, between Lines~{\ref{algo:lmdk-sel-opt-for-each}-\ref{algo:lmdk-sel-opt-end}} evaluates each option in \opts. It finds the option that is the most \emph{similar} to the original (Lines~{\ref{algo:lmdk-sel-opt-comparison}-\ref{algo:lmdk-sel-opt-end}}), i.e.,~the option that has an evaluation that differs the least from that of the sequence $\{t_n\}$ with {\thethings} $\{l_k\}$. \begin{algorithm} \caption{Heuristic dummy {\thething} set options selection} \label{algo:lmdk-sel-heur} \DontPrintSemicolon \KwData{$\{t_n\}, \{l_k\}$} \KwResult{\optim} \BlankLine % Evaluate the original \metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\; \evalOrig $\leftarrow$ \evalSeq{\metricOrig}\; % Get all possible option combinations \optim $\leftarrow$ $[]$\; $\{l_{k'}\} \leftarrow \{l_k\}$\; \While{$\{l_{k'}\} \neq \{t_n\}$}{\label{algo:lmdk-sel-heur-while} % Track the minimum (best) evaluation \diffMin $\leftarrow$ $\infty$\; \optimi $\leftarrow$ $0$\; % Find the combinations for one more point \ForEach{\reg $\in \{t_n\} \setminus \{l_{k'}\}$}{ % Evaluate current \metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \reg, \{l_{k'}\}$}\;\label{algo:lmdk-sel-heur-comparison} \evalCur $\leftarrow$ \evalSeq{\metricCur}\; % Compare evaluations \diffCur $\leftarrow$ $\left|\evalCur - \evalOrig\right|$\; \If{\diffCur $<$ \diffMin}{ \diffMin $\leftarrow$ \diffCur\; \optimi $\leftarrow$ \reg\; }\label{algo:lmdk-sel-heur-comparison-end} } % Save new point to landmarks $k' \leftarrow k' + 1$\; $l_{k'} \leftarrow \optimi$\; % Add new option \optim.add($\{l_{k'}\} \setminus \{l_k\}$)\; }\label{algo:lmdk-sel-heur-end} \Return{\optim} \end{algorithm} Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology. At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $\{t_n\} \setminus \{l_k\}$. Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}). This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$\{l_{k'}\} = \{t_n\}$. Note that the reverse heuristic approach, i.e.,~starting with $\{t_n\}$ {\thethings} and removing until $\{l_k\}$, performs worse than and occasionally the same with Algorithm~\ref{algo:lmdk-sel-heur}. \subsubsection{Privacy-preserving option selection} \label{subsec:priv-opt-sel} % Nearby events Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}. Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall. This leads to worse data utility. % Depending on the {\thething} discovery technique The values of events near a {\thething} are usually similar to that of the latter. Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget. Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility. % Distant events However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events. Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.