evaluation: Re-executed some experiments
This commit is contained in:
		@ -68,29 +68,30 @@ def main(args):
 | 
			
		||||
 | 
			
		||||
    for _ in range(args.iter):
 | 
			
		||||
 | 
			
		||||
      lmdks, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
 | 
			
		||||
      lmdks_sel, eps_out = lmdk_sel.find_lmdks(seq, lmdks, epsilon)
 | 
			
		||||
 | 
			
		||||
      # Skip
 | 
			
		||||
      rls_data_s, bgts_s = lmdk_bgt.skip_cont(seq, lmdks, eps_out)
 | 
			
		||||
      rls_data_s, bgts_s = lmdk_bgt.skip_cont(seq, lmdks_sel, eps_out)
 | 
			
		||||
      # lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
 | 
			
		||||
      mae_s[i] += (lmdk_bgt.mae_cont(rls_data_s)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
      # Uniform
 | 
			
		||||
      rls_data_u, bgts_u = lmdk_bgt.uniform_cont(seq, lmdks, eps_out)
 | 
			
		||||
      rls_data_u, bgts_u = lmdk_bgt.uniform_cont(seq, lmdks_sel, eps_out)
 | 
			
		||||
      # lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_u)
 | 
			
		||||
      mae_u[i] += (lmdk_bgt.mae_cont(rls_data_u)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
      # Adaptive
 | 
			
		||||
      rls_data_a, _, _ = lmdk_bgt.adaptive_cont(seq, lmdks, eps_out, .5, .5)
 | 
			
		||||
      rls_data_a, _, _ = lmdk_bgt.adaptive_cont(seq, lmdks_sel, eps_out, .5, .5)
 | 
			
		||||
      mae_a[i] += (lmdk_bgt.mae_cont(rls_data_a)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
      # Calculate once
 | 
			
		||||
      if i == 0:
 | 
			
		||||
      if pct == lmdks_pct[0]:
 | 
			
		||||
        # Event
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 0), epsilon)
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
        mae_evt += (lmdk_bgt.mae_cont(rls_data_evt)/args.iter)*100
 | 
			
		||||
      elif pct == lmdks_pct[-1]:
 | 
			
		||||
        # User
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 100), epsilon)
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
        mae_usr += (lmdk_bgt.mae_cont(rls_data_usr)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
 | 
			
		||||
@ -80,12 +80,13 @@ def main(args):
 | 
			
		||||
      mae_a[i] += (lmdk_bgt.mae_cont(rls_data_a)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
      # Calculate once
 | 
			
		||||
      if i == 0:
 | 
			
		||||
      if pct == lmdks_pct[0]:
 | 
			
		||||
        # Event
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 0), epsilon)
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
        mae_evt += (lmdk_bgt.mae_cont(rls_data_evt)/args.iter)*100
 | 
			
		||||
      elif pct == lmdks_pct[-1]:
 | 
			
		||||
        # User
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 100), epsilon)
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
        mae_usr += (lmdk_bgt.mae_cont(rls_data_usr)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ def main(args):
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (kWh)')  # Set y axis label.
 | 
			
		||||
  plt.yscale('log')
 | 
			
		||||
  plt.ylim(.1, 10000)
 | 
			
		||||
  plt.ylim(.1, 100000)
 | 
			
		||||
  # Bar offset
 | 
			
		||||
  x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
@ -80,13 +80,13 @@ def main(args):
 | 
			
		||||
      mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Calculate once
 | 
			
		||||
      # Event
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
 | 
			
		||||
      if pct == lmdks_pct[0]:
 | 
			
		||||
        # Event
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
        mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
 | 
			
		||||
      # User
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
 | 
			
		||||
      elif pct == lmdks_pct[-1]:
 | 
			
		||||
        # User
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
        mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
 | 
			
		||||
@ -46,7 +46,7 @@ def main(args):
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (kWh)')  # Set y axis label.
 | 
			
		||||
  plt.yscale('log')
 | 
			
		||||
  plt.ylim(.1, 10000)
 | 
			
		||||
  plt.ylim(.1, 100000)
 | 
			
		||||
  # Bar offset
 | 
			
		||||
  x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
@ -75,13 +75,13 @@ def main(args):
 | 
			
		||||
      mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Calculate once
 | 
			
		||||
      # Event
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
 | 
			
		||||
      if pct == lmdks_pct[0]:
 | 
			
		||||
        # Event
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
        mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
 | 
			
		||||
      # User
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
 | 
			
		||||
      elif pct == lmdks_pct[-1]:
 | 
			
		||||
        # User
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
        mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
 | 
			
		||||
@ -70,7 +70,7 @@ def main(args):
 | 
			
		||||
    # The y axis
 | 
			
		||||
    plt.ylabel('Mean absolute error (m)')  # Set y axis label.
 | 
			
		||||
    plt.yscale('log')
 | 
			
		||||
    # plt.ylim(1, 100000000)
 | 
			
		||||
    plt.ylim(1, 1000000)
 | 
			
		||||
    # Bar offset
 | 
			
		||||
    x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
@ -101,12 +101,13 @@ def main(args):
 | 
			
		||||
          rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, eps_out, .5, .5)
 | 
			
		||||
          mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
 | 
			
		||||
 | 
			
		||||
          # Event
 | 
			
		||||
          if lmdk == 0:
 | 
			
		||||
          # Calculate once
 | 
			
		||||
          if lmdk == min(data_info[d]['lmdks']):
 | 
			
		||||
            # Event
 | 
			
		||||
            rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
            mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
 | 
			
		||||
          # User
 | 
			
		||||
          if lmdk == 100:
 | 
			
		||||
          elif lmdk == max(data_info[d]['lmdks']):
 | 
			
		||||
            # User
 | 
			
		||||
            rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
            mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -68,7 +68,7 @@ def main(args):
 | 
			
		||||
    # The y axis
 | 
			
		||||
    plt.ylabel('Mean absolute error (m)')  # Set y axis label.
 | 
			
		||||
    plt.yscale('log')
 | 
			
		||||
    # plt.ylim(1, 100000000)
 | 
			
		||||
    plt.ylim(1, 1000000)
 | 
			
		||||
    # Bar offset
 | 
			
		||||
    x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
@ -103,12 +103,13 @@ def main(args):
 | 
			
		||||
          # mae_d[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
 | 
			
		||||
          # s_d += s_d_c/args.iter
 | 
			
		||||
 | 
			
		||||
          # Event
 | 
			
		||||
          if lmdk == 0:
 | 
			
		||||
          # Calculate once
 | 
			
		||||
          if lmdk == min(data_info[d]['lmdks']):
 | 
			
		||||
            # Event
 | 
			
		||||
            rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
            mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
 | 
			
		||||
          # User
 | 
			
		||||
          if lmdk == 100:
 | 
			
		||||
          elif lmdk == max(data_info[d]['lmdks']):
 | 
			
		||||
            # User
 | 
			
		||||
            rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
            mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -558,10 +558,10 @@ def skip_cont(seq, lmdks, epsilon):
 | 
			
		||||
    # Add noise
 | 
			
		||||
    o = lmdk_lib.randomized_response(is_landmark, bgts[i])
 | 
			
		||||
    if is_landmark:
 | 
			
		||||
      bgts[i] = 0
 | 
			
		||||
      if i > 0:
 | 
			
		||||
        # Approximate with previous
 | 
			
		||||
        o = rls_data[i - 1][1]
 | 
			
		||||
        bgts[i] = 0
 | 
			
		||||
    rls_data[i] = [is_landmark, o]
 | 
			
		||||
  return rls_data, bgts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								graphics/evaluation/hue-sel.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								graphics/evaluation/hue-sel.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								graphics/evaluation/lmdk-sel-dist-emd.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								graphics/evaluation/lmdk-sel-dist-emd.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								graphics/evaluation/lmdk-sel-dist-norm.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								graphics/evaluation/lmdk-sel-dist-norm.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user