copenhagen: New experiment
This commit is contained in:
parent
2887ef8376
commit
e1c78fbda9
@ -1,169 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
sys.path.insert(1, '../lib')
|
||||
import argparse
|
||||
import ast
|
||||
from datetime import datetime
|
||||
from geopy.distance import distance
|
||||
import lmdk_bgt
|
||||
import lmdk_lib
|
||||
import math
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import time
|
||||
|
||||
|
||||
def main(args):
|
||||
res_file = '/home/manos/Cloud/Data/HUE/Results.zip'
|
||||
# User's consumption
|
||||
seq = lmdk_lib.load_data(args, 'cons')
|
||||
# The name of the dataset
|
||||
d = 'HUE'
|
||||
# The landmarks percentages
|
||||
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||||
# Landmarks' thresholds
|
||||
lmdks_th = [0, .54, .68, .88, 1.12, 10]
|
||||
# The privacy budget
|
||||
epsilon = 10.0
|
||||
|
||||
# Number of methods
|
||||
n = 3
|
||||
# Width of bars
|
||||
bar_width = 1/(n + 1)
|
||||
# The x axis
|
||||
x_i = np.arange(len(lmdks_pct))
|
||||
x_margin = bar_width*(n/2 + 1)
|
||||
|
||||
print('\n##############################', d, '\n')
|
||||
|
||||
# Initialize plot
|
||||
lmdk_lib.plot_init()
|
||||
# The x axis
|
||||
plt.xticks(x_i, np.array(lmdks_pct, int))
|
||||
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||
# The y axis
|
||||
plt.ylabel('Mean absolute error (kWh)') # Set y axis label.
|
||||
plt.yscale('log')
|
||||
# plt.ylim(.01, 10000)
|
||||
# Bar offset
|
||||
x_offset = -(bar_width/2)*(n - 1)
|
||||
|
||||
mae_u = np.zeros(len(lmdks_pct))
|
||||
mae_s = np.zeros(len(lmdks_pct))
|
||||
mae_a = np.zeros(len(lmdks_pct))
|
||||
mae_evt = 0
|
||||
mae_usr = 0
|
||||
|
||||
for i, pct in enumerate(lmdks_pct):
|
||||
# Find landmarks
|
||||
lmdks = seq[seq[:, 1] < lmdks_th[i]]
|
||||
|
||||
for _ in range(args.iter):
|
||||
# Skip
|
||||
rls_data_s, bgts_s = lmdk_bgt.skip_cons(seq, lmdks, epsilon)
|
||||
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||||
mae_s[i] += lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter
|
||||
|
||||
# Uniform
|
||||
rls_data_u, bgts_u = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
|
||||
mae_u[i] += lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter
|
||||
|
||||
# Adaptive
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, epsilon, .5, .5)
|
||||
mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
|
||||
|
||||
# Calculate once
|
||||
# Event
|
||||
if i == 0:
|
||||
rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
|
||||
mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
|
||||
# User
|
||||
if i == 0:
|
||||
rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
|
||||
mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
|
||||
|
||||
plt.axhline(
|
||||
y = mae_evt,
|
||||
color = '#212121',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
||||
|
||||
plt.axhline(
|
||||
y = mae_usr,
|
||||
color = '#616161',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
||||
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_s,
|
||||
bar_width,
|
||||
label='Skip',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_u,
|
||||
bar_width,
|
||||
label='Uniform',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_a,
|
||||
bar_width,
|
||||
label='Adaptive',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
|
||||
path = str('../../rslt/bgt_cmp/' + d)
|
||||
# Plot legend
|
||||
lmdk_lib.plot_legend()
|
||||
# Show plot
|
||||
# plt.show()
|
||||
# Save plot
|
||||
lmdk_lib.save_plot(path + '.pdf')
|
||||
print('[OK]', flush=True)
|
||||
|
||||
|
||||
def parse_args():
|
||||
'''
|
||||
Parse arguments.
|
||||
|
||||
Optional:
|
||||
res - The results archive file.
|
||||
iter - The total iterations.
|
||||
'''
|
||||
# Create argument parser.
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Mandatory arguments.
|
||||
|
||||
# Optional arguments.
|
||||
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
|
||||
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||||
|
||||
# Parse arguments.
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
start_time = time.time()
|
||||
main(parse_args())
|
||||
end_time = time.time()
|
||||
print('##############################')
|
||||
print('Time : %.4fs' % (end_time - start_time))
|
||||
print('##############################')
|
||||
except KeyboardInterrupt:
|
||||
print('Interrupted by user.')
|
||||
exit()
|
@ -19,11 +19,11 @@ def main(args):
|
||||
# Contacts for all users
|
||||
cont_data = lmdk_lib.load_data(args, 'cont')
|
||||
# Contacts for landmark's percentages for all users
|
||||
lmdk_data = lmdk_lib.load_data(args, 'usrs_expt')
|
||||
lmdk_data = lmdk_lib.load_data(args, 'usrs_data')
|
||||
# The name of the dataset
|
||||
d = 'Copenhagen'
|
||||
# The user's id
|
||||
uid = '623'
|
||||
uid = '449'
|
||||
# The landmarks percentages
|
||||
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||||
# The privacy budget
|
||||
@ -39,7 +39,7 @@ def main(args):
|
||||
|
||||
print('\n##############################', d, '\n')
|
||||
# Get user's contacts sequence
|
||||
seq = cont_data[cont_data[:, 1] == float(uid)]
|
||||
seq = cont_data[cont_data[:, 1] == float(uid)][:1000]
|
||||
|
||||
# Initialize plot
|
||||
lmdk_lib.plot_init()
|
||||
@ -50,15 +50,15 @@ def main(args):
|
||||
# The y axis
|
||||
plt.ylabel('Mean absolute error') # Set y axis label.
|
||||
# plt.yscale('log')
|
||||
plt.ylim(0, 1.4)
|
||||
# plt.ylim(0, 1.4)
|
||||
# Bar offset
|
||||
x_offset = -(bar_width/2)*(n - 1)
|
||||
|
||||
mae_u = np.zeros(len(lmdks_pct))
|
||||
mae_s = np.zeros(len(lmdks_pct))
|
||||
mae_a = np.zeros(len(lmdks_pct))
|
||||
mae_evt = np.zeros(len(lmdks_pct))
|
||||
mae_usr = np.zeros(len(lmdks_pct))
|
||||
mae_evt = 0
|
||||
mae_usr = 0
|
||||
|
||||
for i, pct in enumerate(lmdks_pct):
|
||||
# Find landmarks
|
||||
@ -79,30 +79,28 @@ def main(args):
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive_cont(seq, lmdks, epsilon, .5, .5)
|
||||
mae_a[i] += lmdk_bgt.mae_cont(rls_data_a)/args.iter
|
||||
|
||||
# Event
|
||||
# Calculate once
|
||||
if i == 0:
|
||||
# Event
|
||||
rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 0), epsilon)
|
||||
mae_evt[i] += lmdk_bgt.mae_cont(rls_data_evt)/args.iter
|
||||
# User
|
||||
# Calculate once
|
||||
if i == 0:
|
||||
mae_evt += lmdk_bgt.mae_cont(rls_data_evt)/args.iter
|
||||
# User
|
||||
rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 100), epsilon)
|
||||
mae_usr[i] += lmdk_bgt.mae_cont(rls_data_usr)/args.iter
|
||||
mae_usr += lmdk_bgt.mae_cont(rls_data_usr)/args.iter
|
||||
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae_evt,
|
||||
plt.axhline(
|
||||
y = mae_evt,
|
||||
color = '#212121',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
plt.text(x_i[-1], mae_evt[-1], ' event')
|
||||
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
||||
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae_usr,
|
||||
plt.axhline(
|
||||
y = mae_usr,
|
||||
color = '#616161',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
plt.text(x_i[-1], mae_usr[-1], ' user')
|
||||
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
||||
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
@ -17,22 +17,11 @@ import time
|
||||
import zipfile
|
||||
|
||||
'''
|
||||
Suitable in first 1000 contacts.
|
||||
usr n
|
||||
311 8193
|
||||
317 2044
|
||||
323 1642
|
||||
366 3406
|
||||
368 5099
|
||||
478 2616
|
||||
486 3112
|
||||
508 4981
|
||||
585 9443
|
||||
595 4459
|
||||
616 4355
|
||||
623 1586
|
||||
637 4479
|
||||
664 4315
|
||||
688 19728
|
||||
449 12167
|
||||
550 4221
|
||||
689 3228
|
||||
705 5
|
||||
'''
|
||||
|
||||
@ -90,15 +79,15 @@ def main(args):
|
||||
# Check each user
|
||||
goal = [.2, .4, .6, .8]
|
||||
# Get users' data from previous parsing
|
||||
usrs_expt = lmdk_lib.load_data(args, 'usrs_expt')
|
||||
if usrs_expt.size == 0:
|
||||
usrs_data = lmdk_lib.load_data(args, 'usrs_data')
|
||||
if usrs_data.size == 0:
|
||||
# Users suitable for experiments
|
||||
usrs_expt = []
|
||||
for usr_i, usr in enumerate(usrs):
|
||||
print('Checking %d (%d%%: %d/%d)... ' %(usr, (usr_i + 1)*100/len(usrs), usr_i + 1, len(usrs)), end='', flush=True)
|
||||
usrs_expt_cur = []
|
||||
# User's contacts
|
||||
usr_cont = cont_data[cont_data[:, uid_a] == usr]
|
||||
# User's first 1000 contacts
|
||||
usr_cont = cont_data[cont_data[:, uid_a] == usr][:1000]
|
||||
# For each goal
|
||||
for_expt = True
|
||||
for g in goal:
|
||||
@ -130,9 +119,10 @@ def main(args):
|
||||
for_expt = False
|
||||
break
|
||||
# Save to results
|
||||
lmdk_lib.save_data(args, np.array(usrs_expt, str), 'usrs_expt')
|
||||
usrs_data = np.array(usrs_expt, str)
|
||||
lmdk_lib.save_data(args, usrs_data, 'usrs_data')
|
||||
# Get all users
|
||||
usrs = np.unique(usrs_expt[:, 0])
|
||||
usrs = np.unique(usrs_data[:, 0])
|
||||
for usr in usrs:
|
||||
usr_cont = cont_data[cont_data[:, uid_a] == float(usr)]
|
||||
print(int(usr), len(usr_cont))
|
||||
@ -145,7 +135,7 @@ def main(args):
|
||||
# # All user contacts
|
||||
# usr_cont = cont_data[cont_data[:, uid_a] == float(usr)]
|
||||
# # All user landmarks for different goals
|
||||
# usr_lmdk = usrs_expt[usrs_expt[:, 0] == usr]
|
||||
# usr_lmdk = usrs_data[usrs_data[:, 0] == usr]
|
||||
# for g in goal:
|
||||
# # Get goal landmarks
|
||||
# cont = ast.literal_eval(usr_lmdk[usr_lmdk[:, 1] == str(g)][0][2])
|
||||
|
Loading…
Reference in New Issue
Block a user