expt: Testing epsilon percentages

This commit is contained in:
Manos Katsomallos 2021-10-12 23:26:38 +02:00
parent 417ed28513
commit dc42ec6663
7 changed files with 536 additions and 0 deletions

View File

@ -0,0 +1,154 @@
#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
import ast
from datetime import datetime
from geopy.distance import distance
import lmdk_bgt
import lmdk_lib
import lmdk_sel
import exp_mech
import math
import numpy as np
from matplotlib import pyplot as plt
import time
def main(args):
# Contacts for all users
cont_data = lmdk_lib.load_data(args, 'cont')
# Contacts for landmark's percentages for all users
lmdk_data = lmdk_lib.load_data(args, 'usrs_data')
# The name of the dataset
d = 'Copenhagen'
# The user's id
uid = '449'
# The landmarks percentages
lmdks_pct = [0, 20, 40, 60, 80, 100]
# The privacy budget
epsilon = 1.0
eps_pct = [20, 40, 60, 80]
markers = [
'^', # 20
'v', # 40
'D', # 60
's' # 80
]
print('\n##############################', d, '\n')
# Get user's contacts sequence
seq = cont_data[cont_data[:, 1] == float(uid)][:1000]
# Initialize plot
lmdk_lib.plot_init()
# The x axis
x_i = np.arange(len(lmdks_pct))
plt.xticks(x_i, np.array(lmdks_pct, int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min(), x_i.max())
# The y axis
plt.ylabel('Mean absolute error (%)') # Set y axis label.
# plt.yscale('log')
plt.ylim(0, 100)
mae_evt = 0
mae_usr = 0
for i_e, e in enumerate(eps_pct):
mae = np.zeros(len(lmdks_pct))
for i, pct in enumerate(lmdks_pct):
# Find landmarks
lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
for _ in range(args.iter):
lmdks_sel = lmdk_sel.find_lmdks_eps(seq, lmdks, epsilon*e/100)
# Uniform
rls_data, _ = lmdk_bgt.uniform_cont(seq, lmdks_sel, epsilon*(1 - e/100))
mae[i] += (lmdk_bgt.mae_cont(rls_data)/args.iter)*100
# Calculate once
if e == eps_pct[0] and pct == lmdks_pct[0]:
# Event
rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
mae_evt += (lmdk_bgt.mae_cont(rls_data_evt)/args.iter)*100
elif e == eps_pct[-1] and pct == lmdks_pct[-1]:
# User
rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
mae_usr += (lmdk_bgt.mae_cont(rls_data_usr)/args.iter)*100
# Plot line
plt.plot(
x_i,
mae,
label=str(e/100) + 'ε',
marker=markers[i_e],
markersize=lmdk_lib.marker_size,
markeredgewidth=0,
linewidth=lmdk_lib.line_width
)
plt.axhline(
y = mae_evt,
color = '#212121',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.05, 'event')
plt.axhline(
y = mae_usr,
color = '#616161',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.05, 'user')
path = str('../../rslt/lmdk_sel_eps/' + d)
# Plot legend
lmdk_lib.plot_legend()
# # Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(path + '-sel-eps.pdf')
print('[OK]', flush=True)
def parse_args():
'''
Parse arguments.
Optional:
res - The results archive file.
iter - The total iterations.
'''
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/Copenhagen/Results.zip')
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()

149
code/expt/hue-sel-eps.py Normal file
View File

@ -0,0 +1,149 @@
#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
import ast
from datetime import datetime
from geopy.distance import distance
import lmdk_bgt
import lmdk_lib
import lmdk_sel
import exp_mech
import math
import numpy as np
from matplotlib import pyplot as plt
import time
def main(args):
# User's consumption
seq = lmdk_lib.load_data(args, 'cons')
# The name of the dataset
d = 'HUE'
# The landmarks percentages
lmdks_pct = [0, 20, 40, 60, 80, 100]
# Landmarks' thresholds
lmdks_th = [0, .54, .68, .88, 1.12, 10]
# The privacy budget
epsilon = 1.0
eps_pct = [20, 40, 60, 80]
markers = [
'^', # 20
'v', # 40
'D', # 60
's' # 80
]
print('\n##############################', d, '\n')
# Initialize plot
lmdk_lib.plot_init()
# The x axis
x_i = np.arange(len(lmdks_pct))
plt.xticks(x_i, np.array(lmdks_pct, int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min(), x_i.max())
# The y axis
plt.ylabel('Mean absolute error (kWh)') # Set y axis label.
plt.yscale('log')
plt.ylim(.1, 100000)
mae_evt = 0
mae_usr = 0
for i_e, e in enumerate(eps_pct):
mae = np.zeros(len(lmdks_pct))
for i, pct in enumerate(lmdks_pct):
# Find landmarks
lmdks = seq[seq[:, 1] < lmdks_th[i]]
for _ in range(args.iter):
lmdks = lmdk_sel.find_lmdks_eps(seq, lmdks, epsilon*e/100)
# Uniform
rls_data, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon*(1 - e/100))
mae[i] += lmdk_bgt.mae_cons(seq, rls_data)/args.iter
# Calculate once
if e == eps_pct[0] and pct == lmdks_pct[0]:
# Event
rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
elif e == eps_pct[-1] and pct == lmdks_pct[-1]:
# User
rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
# Plot line
plt.plot(
x_i,
mae,
label=str(e/100) + 'ε',
marker=markers[i_e],
markersize=lmdk_lib.marker_size,
markeredgewidth=0,
linewidth=lmdk_lib.line_width
)
plt.axhline(
y = mae_evt,
color = '#212121',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.14, 'event')
plt.axhline(
y = mae_usr,
color = '#616161',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.14, 'user')
path = str('../../rslt/lmdk_sel_eps/' + d)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(path + '-sel-eps.pdf')
print('[OK]', flush=True)
def parse_args():
'''
Parse arguments.
Optional:
res - The results archive file.
iter - The total iterations.
'''
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()

View File

@ -0,0 +1,179 @@
#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
from datetime import datetime
from geopy.distance import distance
import lmdk_bgt
import lmdk_lib
import lmdk_sel
import exp_mech
import numpy as np
from matplotlib import pyplot as plt
import time
def main(args):
# The data files
data_files = {
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
}
# Data related info
data_info = {
'T-drive': {
'uid': 2,
'lmdks': {
0: {'dist': 0, 'per': 1000}, # 0.0%
20: {'dist': 2095, 'per': 30}, # 19.6%
40: {'dist': 2790, 'per': 30}, # 40.2%
60: {'dist': 3590, 'per': 30}, # 59.9%
80: {'dist': 4825, 'per': 30}, # 79.4%
100: {'dist': 10350, 'per': 30} # 100.0%
}
}
}
# The data sets
data_sets = {}
# Load data sets
for df in data_files:
args.res = data_files[df]
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
# Geo-I configuration
# epsilon = level/radius
# Radius is in meters
bgt_conf = [
{'epsilon': 1},
]
eps_pct = [20, 40, 60, 80]
markers = [
'^', # 20
'v', # 40
'D', # 60
's' # 80
]
# The x axis
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
for d in data_sets:
print('\n##############################', d, '\n')
args.res = data_files[d]
data = data_sets[d]
# Truncate trajectory according to arguments
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
# Initialize plot
lmdk_lib.plot_init()
# The x axis
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min(), x_i.max())
# The y axis
plt.ylabel('Mean absolute error (m)') # Set y axis label.
plt.yscale('log')
plt.ylim(1, 1000000)
mae_evt = 0
mae_usr = 0
for i_e, e in enumerate(eps_pct):
mae = np.zeros(len(data_info[d]['lmdks']))
for i, lmdk in enumerate(data_info[d]['lmdks']):
# Find landmarks
args.dist = data_info[d]['lmdks'][lmdk]['dist']
args.per = data_info[d]['lmdks'][lmdk]['per']
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
for bgt in bgt_conf:
for _ in range(args.iter):
lmdks = lmdk_sel.find_lmdks_eps(seq, lmdks, bgt['epsilon']*e/100)
# Uniform
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon']*(1 - e/100))
mae[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
# Calculate once
if e == eps_pct[0] and lmdk == min(data_info[d]['lmdks']):
# Event
rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
elif e == eps_pct[-1] and lmdk == max(data_info[d]['lmdks']):
# User
rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
# Plot line
plt.plot(
x_i,
mae,
label=str(e/100) + 'ε',
marker=markers[i_e],
markersize=lmdk_lib.marker_size,
markeredgewidth=0,
linewidth=lmdk_lib.line_width
)
plt.axhline(
y = mae_evt,
color = '#212121',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.05, 'event')
plt.axhline(
y = mae_usr,
color = '#616161',
linewidth=lmdk_lib.line_width
)
plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.05, 'user')
path = str('../../rslt/lmdk_sel_eps/' + d)
# Plot legend
lmdk_lib.plot_legend()
# # Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(path + '-sel-eps.pdf')
def parse_args():
'''
Parse arguments.
Optional:
dist - The coordinates distance threshold in meters.
per - The timestaps period threshold in mimutes.
time - The total timestamps.
iter - The total iterations.
'''
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()

View File

@ -391,6 +391,60 @@ def find_lmdks(seq, lmdks, epsilon):
lmdks_new = seq[lmdks_seq_new - 1] lmdks_new = seq[lmdks_seq_new - 1]
return lmdks_new, epsilon - eps_sel return lmdks_new, epsilon - eps_sel
def find_lmdks_eps(seq, lmdks, epsilon):
'''
Add dummy landmarks to original landmarks.
Parameters:
seq - All of the data points.
lmdks - The original landmarks.
epsilon - The available privacy budget.
Returns:
lmdks_new - The new landmarks.
'''
# The new landmarks
lmdks_new = lmdks
if len(lmdks) > 0 and len(seq) != len(lmdks):
# Get landmarks timestamps in sequence
lmdks_seq = find_lmdks_seq(seq, lmdks)
# Turn landmarks to histogram
hist, h = get_hist(get_seq(1, len(seq)), lmdks_seq)
# Find all possible options
opts = get_opts_from_top_h(get_seq(1, len(seq)), lmdks_seq)
# Get landmarks histogram with dummy landmarks
hist_new, _ = exp_mech.exponential(hist, opts, exp_mech.score, 1.0, epsilon)
# Split sequence in parts of size h
pt_idx = []
for idx in range(1, len(seq), h):
pt_idx.append([idx, idx + h - 1])
pt_idx[-1][1] = len(seq)
# Get new landmarks indexes
lmdks_seq_new = np.array([], dtype=int)
for i, pt in enumerate(pt_idx):
# Already landmarks
lmdks_seq_pt = lmdks_seq[(lmdks_seq >= pt[0]) & (lmdks_seq <= pt[1])]
# Sample randomly from the rest of the sequence
size = hist_new[i] - len(lmdks_seq_pt)
rglr = np.setdiff1d(np.arange(pt[0], pt[1] + 1), lmdks_seq_pt)
# Add already landmarks
lmdks_seq_new = np.concatenate([lmdks_seq_new, lmdks_seq_pt])
# Add new landmarks
if size > 0 and len(rglr) > size:
lmdks_seq_new = np.concatenate([lmdks_seq_new,
np.random.choice(
rglr,
size = size,
replace = False
)
])
# Get actual landmarks values
lmdks_new = seq[lmdks_seq_new - 1]
return lmdks_new
def test(): def test():
# Start and end points of the sequence # Start and end points of the sequence
# # Nonrandom # # Nonrandom

Binary file not shown.

Binary file not shown.

Binary file not shown.