expt: Testing epsilon percentages
This commit is contained in:
		
							
								
								
									
										154
									
								
								code/expt/copenhagen-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										154
									
								
								code/expt/copenhagen-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,154 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
import ast
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from geopy.distance import distance
 | 
			
		||||
import lmdk_bgt
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import lmdk_sel
 | 
			
		||||
import exp_mech
 | 
			
		||||
import math
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  # Contacts for all users
 | 
			
		||||
  cont_data = lmdk_lib.load_data(args, 'cont')
 | 
			
		||||
  # Contacts for landmark's percentages for all users
 | 
			
		||||
  lmdk_data = lmdk_lib.load_data(args, 'usrs_data')
 | 
			
		||||
  # The name of the dataset
 | 
			
		||||
  d = 'Copenhagen'
 | 
			
		||||
  # The user's id
 | 
			
		||||
  uid = '449'
 | 
			
		||||
  # The landmarks percentages
 | 
			
		||||
  lmdks_pct = [0, 20, 40, 60, 80, 100]
 | 
			
		||||
  # The privacy budget
 | 
			
		||||
  epsilon = 1.0
 | 
			
		||||
  eps_pct = [20, 40, 60, 80]
 | 
			
		||||
 | 
			
		||||
  markers = [
 | 
			
		||||
    '^', # 20
 | 
			
		||||
    'v', # 40
 | 
			
		||||
    'D', # 60
 | 
			
		||||
    's'  # 80
 | 
			
		||||
  ]
 | 
			
		||||
 | 
			
		||||
  print('\n##############################', d, '\n')
 | 
			
		||||
  # Get user's contacts sequence
 | 
			
		||||
  seq = cont_data[cont_data[:, 1] == float(uid)][:1000]
 | 
			
		||||
 | 
			
		||||
  # Initialize plot
 | 
			
		||||
  lmdk_lib.plot_init()
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(lmdks_pct))
 | 
			
		||||
  plt.xticks(x_i, np.array(lmdks_pct, int))
 | 
			
		||||
  plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
			
		||||
  plt.xlim(x_i.min(), x_i.max())
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (%)')  # Set y axis label.
 | 
			
		||||
  # plt.yscale('log')
 | 
			
		||||
  plt.ylim(0, 100)
 | 
			
		||||
 | 
			
		||||
  mae_evt = 0
 | 
			
		||||
  mae_usr = 0
 | 
			
		||||
 | 
			
		||||
  for i_e, e in enumerate(eps_pct):
 | 
			
		||||
    mae = np.zeros(len(lmdks_pct))
 | 
			
		||||
 | 
			
		||||
    for i, pct in enumerate(lmdks_pct):
 | 
			
		||||
      # Find landmarks
 | 
			
		||||
      lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
 | 
			
		||||
 | 
			
		||||
      for _ in range(args.iter):
 | 
			
		||||
 | 
			
		||||
        lmdks_sel = lmdk_sel.find_lmdks_eps(seq, lmdks, epsilon*e/100)
 | 
			
		||||
 | 
			
		||||
        # Uniform
 | 
			
		||||
        rls_data, _ = lmdk_bgt.uniform_cont(seq, lmdks_sel, epsilon*(1 - e/100))
 | 
			
		||||
        mae[i] += (lmdk_bgt.mae_cont(rls_data)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
        # Calculate once
 | 
			
		||||
        if e == eps_pct[0] and pct == lmdks_pct[0]:
 | 
			
		||||
          # Event
 | 
			
		||||
          rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
          mae_evt += (lmdk_bgt.mae_cont(rls_data_evt)/args.iter)*100
 | 
			
		||||
        elif e == eps_pct[-1] and pct == lmdks_pct[-1]:
 | 
			
		||||
          # User
 | 
			
		||||
          rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
 | 
			
		||||
          mae_usr += (lmdk_bgt.mae_cont(rls_data_usr)/args.iter)*100
 | 
			
		||||
 | 
			
		||||
    # Plot line
 | 
			
		||||
    plt.plot(
 | 
			
		||||
      x_i,
 | 
			
		||||
      mae,
 | 
			
		||||
      label=str(e/100) + 'ε',
 | 
			
		||||
      marker=markers[i_e],
 | 
			
		||||
      markersize=lmdk_lib.marker_size,
 | 
			
		||||
      markeredgewidth=0,
 | 
			
		||||
      linewidth=lmdk_lib.line_width
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_evt,
 | 
			
		||||
    color = '#212121',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.05, 'event')
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_usr,
 | 
			
		||||
    color = '#616161',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.05, 'user')
 | 
			
		||||
 | 
			
		||||
  path = str('../../rslt/lmdk_sel_eps/' + d)
 | 
			
		||||
  # Plot legend
 | 
			
		||||
  lmdk_lib.plot_legend()
 | 
			
		||||
  # # Show plot
 | 
			
		||||
  # plt.show()
 | 
			
		||||
  # Save plot
 | 
			
		||||
  lmdk_lib.save_plot(path + '-sel-eps.pdf')
 | 
			
		||||
  print('[OK]', flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
  '''
 | 
			
		||||
    Parse arguments.
 | 
			
		||||
 | 
			
		||||
    Optional:
 | 
			
		||||
      res  - The results archive file.
 | 
			
		||||
      iter - The total iterations.
 | 
			
		||||
  '''
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/Copenhagen/Results.zip')
 | 
			
		||||
  parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
							
								
								
									
										149
									
								
								code/expt/hue-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								code/expt/hue-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,149 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
import ast
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from geopy.distance import distance
 | 
			
		||||
import lmdk_bgt
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import lmdk_sel
 | 
			
		||||
import exp_mech
 | 
			
		||||
import math
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  # User's consumption
 | 
			
		||||
  seq = lmdk_lib.load_data(args, 'cons')
 | 
			
		||||
  # The name of the dataset
 | 
			
		||||
  d = 'HUE'
 | 
			
		||||
  # The landmarks percentages
 | 
			
		||||
  lmdks_pct = [0, 20, 40, 60, 80, 100]
 | 
			
		||||
  # Landmarks' thresholds
 | 
			
		||||
  lmdks_th = [0, .54, .68, .88, 1.12, 10]
 | 
			
		||||
  # The privacy budget
 | 
			
		||||
  epsilon = 1.0
 | 
			
		||||
  eps_pct = [20, 40, 60, 80]
 | 
			
		||||
 | 
			
		||||
  markers = [
 | 
			
		||||
    '^', # 20
 | 
			
		||||
    'v', # 40
 | 
			
		||||
    'D', # 60
 | 
			
		||||
    's'  # 80
 | 
			
		||||
  ]
 | 
			
		||||
 | 
			
		||||
  print('\n##############################', d, '\n')
 | 
			
		||||
 | 
			
		||||
  # Initialize plot
 | 
			
		||||
  lmdk_lib.plot_init()
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(lmdks_pct))
 | 
			
		||||
  plt.xticks(x_i, np.array(lmdks_pct, int))
 | 
			
		||||
  plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
			
		||||
  plt.xlim(x_i.min(), x_i.max())
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (kWh)')  # Set y axis label.
 | 
			
		||||
  plt.yscale('log')
 | 
			
		||||
  plt.ylim(.1, 100000)
 | 
			
		||||
 | 
			
		||||
  mae_evt = 0
 | 
			
		||||
  mae_usr = 0
 | 
			
		||||
 | 
			
		||||
  for i_e, e in enumerate(eps_pct):
 | 
			
		||||
    mae = np.zeros(len(lmdks_pct))
 | 
			
		||||
 | 
			
		||||
    for i, pct in enumerate(lmdks_pct):
 | 
			
		||||
      # Find landmarks
 | 
			
		||||
      lmdks = seq[seq[:, 1] < lmdks_th[i]]
 | 
			
		||||
 | 
			
		||||
      for _ in range(args.iter):
 | 
			
		||||
 | 
			
		||||
        lmdks = lmdk_sel.find_lmdks_eps(seq, lmdks, epsilon*e/100)
 | 
			
		||||
 | 
			
		||||
        # Uniform
 | 
			
		||||
        rls_data, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon*(1 - e/100))
 | 
			
		||||
        mae[i] += lmdk_bgt.mae_cons(seq, rls_data)/args.iter
 | 
			
		||||
 | 
			
		||||
        # Calculate once
 | 
			
		||||
        if e == eps_pct[0] and pct == lmdks_pct[0]:
 | 
			
		||||
          # Event
 | 
			
		||||
          rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
          mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
 | 
			
		||||
        elif e == eps_pct[-1] and pct == lmdks_pct[-1]:
 | 
			
		||||
          # User
 | 
			
		||||
          rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
          mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
    # Plot line
 | 
			
		||||
    plt.plot(
 | 
			
		||||
      x_i,
 | 
			
		||||
      mae,
 | 
			
		||||
      label=str(e/100) + 'ε',
 | 
			
		||||
      marker=markers[i_e],
 | 
			
		||||
      markersize=lmdk_lib.marker_size,
 | 
			
		||||
      markeredgewidth=0,
 | 
			
		||||
      linewidth=lmdk_lib.line_width
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_evt,
 | 
			
		||||
    color = '#212121',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.14, 'event')
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_usr,
 | 
			
		||||
    color = '#616161',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.14, 'user')
 | 
			
		||||
 | 
			
		||||
  path = str('../../rslt/lmdk_sel_eps/' + d)
 | 
			
		||||
  # Plot legend
 | 
			
		||||
  lmdk_lib.plot_legend()
 | 
			
		||||
  # Show plot
 | 
			
		||||
  # plt.show()
 | 
			
		||||
  # Save plot
 | 
			
		||||
  lmdk_lib.save_plot(path + '-sel-eps.pdf')
 | 
			
		||||
  print('[OK]', flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
  '''
 | 
			
		||||
    Parse arguments.
 | 
			
		||||
 | 
			
		||||
    Optional:
 | 
			
		||||
      res  - The results archive file.
 | 
			
		||||
      iter - The total iterations.
 | 
			
		||||
  '''
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
 | 
			
		||||
  parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
							
								
								
									
										179
									
								
								code/expt/t-drive-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										179
									
								
								code/expt/t-drive-sel-eps.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,179 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from geopy.distance import distance
 | 
			
		||||
import lmdk_bgt
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import lmdk_sel
 | 
			
		||||
import exp_mech
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  # The data files
 | 
			
		||||
  data_files = {
 | 
			
		||||
    'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
 | 
			
		||||
  }
 | 
			
		||||
  # Data related info
 | 
			
		||||
  data_info = {
 | 
			
		||||
    'T-drive': {
 | 
			
		||||
      'uid': 2,
 | 
			
		||||
      'lmdks': {
 | 
			
		||||
          0: {'dist': 0, 'per': 1000},   #   0.0%
 | 
			
		||||
         20: {'dist': 2095, 'per': 30},  #  19.6%
 | 
			
		||||
         40: {'dist': 2790, 'per': 30},  #  40.2%
 | 
			
		||||
         60: {'dist': 3590, 'per': 30},  #  59.9%
 | 
			
		||||
         80: {'dist': 4825, 'per': 30},  #  79.4%
 | 
			
		||||
        100: {'dist': 10350, 'per': 30}  # 100.0%
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  # The data sets
 | 
			
		||||
  data_sets = {}
 | 
			
		||||
  # Load data sets
 | 
			
		||||
  for df in data_files:
 | 
			
		||||
    args.res = data_files[df]
 | 
			
		||||
    data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
 | 
			
		||||
  # Geo-I configuration
 | 
			
		||||
  # epsilon = level/radius
 | 
			
		||||
  # Radius is in meters
 | 
			
		||||
  bgt_conf = [
 | 
			
		||||
    {'epsilon': 1},
 | 
			
		||||
  ]
 | 
			
		||||
  eps_pct = [20, 40, 60, 80]
 | 
			
		||||
 | 
			
		||||
  markers = [
 | 
			
		||||
    '^', # 20
 | 
			
		||||
    'v', # 40
 | 
			
		||||
    'D', # 60
 | 
			
		||||
    's'  # 80
 | 
			
		||||
  ]
 | 
			
		||||
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
 | 
			
		||||
 | 
			
		||||
  for d in data_sets:
 | 
			
		||||
    print('\n##############################', d, '\n')
 | 
			
		||||
    args.res = data_files[d]
 | 
			
		||||
    data = data_sets[d]
 | 
			
		||||
    # Truncate trajectory according to arguments
 | 
			
		||||
    seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
 | 
			
		||||
 | 
			
		||||
    # Initialize plot
 | 
			
		||||
    lmdk_lib.plot_init()
 | 
			
		||||
    # The x axis
 | 
			
		||||
    plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
 | 
			
		||||
    plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
			
		||||
    plt.xlim(x_i.min(), x_i.max())
 | 
			
		||||
    # The y axis
 | 
			
		||||
    plt.ylabel('Mean absolute error (m)')  # Set y axis label.
 | 
			
		||||
    plt.yscale('log')
 | 
			
		||||
    plt.ylim(1, 1000000)
 | 
			
		||||
 | 
			
		||||
    mae_evt = 0
 | 
			
		||||
    mae_usr = 0
 | 
			
		||||
 | 
			
		||||
    for i_e, e in enumerate(eps_pct):
 | 
			
		||||
      mae = np.zeros(len(data_info[d]['lmdks']))
 | 
			
		||||
      for i, lmdk in enumerate(data_info[d]['lmdks']):
 | 
			
		||||
        # Find landmarks
 | 
			
		||||
        args.dist = data_info[d]['lmdks'][lmdk]['dist']
 | 
			
		||||
        args.per = data_info[d]['lmdks'][lmdk]['per']
 | 
			
		||||
        lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
 | 
			
		||||
        for bgt in bgt_conf:
 | 
			
		||||
          for _ in range(args.iter):
 | 
			
		||||
 | 
			
		||||
            lmdks = lmdk_sel.find_lmdks_eps(seq, lmdks, bgt['epsilon']*e/100)
 | 
			
		||||
 | 
			
		||||
            # Uniform
 | 
			
		||||
            rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon']*(1 - e/100))
 | 
			
		||||
            mae[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
 | 
			
		||||
 | 
			
		||||
            # Calculate once
 | 
			
		||||
            if e == eps_pct[0] and lmdk == min(data_info[d]['lmdks']):
 | 
			
		||||
              # Event
 | 
			
		||||
              rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
              mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
 | 
			
		||||
            elif e == eps_pct[-1] and lmdk == max(data_info[d]['lmdks']):
 | 
			
		||||
              # User
 | 
			
		||||
              rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
 | 
			
		||||
              mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Plot line
 | 
			
		||||
      plt.plot(
 | 
			
		||||
        x_i,
 | 
			
		||||
        mae,
 | 
			
		||||
        label=str(e/100) + 'ε',
 | 
			
		||||
        marker=markers[i_e],
 | 
			
		||||
        markersize=lmdk_lib.marker_size,
 | 
			
		||||
        markeredgewidth=0,
 | 
			
		||||
        linewidth=lmdk_lib.line_width
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
    plt.axhline(
 | 
			
		||||
      y = mae_evt,
 | 
			
		||||
      color = '#212121',
 | 
			
		||||
      linewidth=lmdk_lib.line_width
 | 
			
		||||
    )
 | 
			
		||||
    plt.text(x_i[-1] + x_i[-1]*.01, mae_evt - mae_evt*.05, 'event')
 | 
			
		||||
 | 
			
		||||
    plt.axhline(
 | 
			
		||||
      y = mae_usr,
 | 
			
		||||
      color = '#616161',
 | 
			
		||||
      linewidth=lmdk_lib.line_width
 | 
			
		||||
    )
 | 
			
		||||
    plt.text(x_i[-1] + x_i[-1]*.01, mae_usr - mae_usr*.05, 'user')
 | 
			
		||||
 | 
			
		||||
    path = str('../../rslt/lmdk_sel_eps/' + d)
 | 
			
		||||
    # Plot legend
 | 
			
		||||
    lmdk_lib.plot_legend()
 | 
			
		||||
    # # Show plot
 | 
			
		||||
    # plt.show()
 | 
			
		||||
    # Save plot
 | 
			
		||||
    lmdk_lib.save_plot(path + '-sel-eps.pdf')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
  '''
 | 
			
		||||
    Parse arguments.
 | 
			
		||||
 | 
			
		||||
    Optional:
 | 
			
		||||
      dist - The coordinates distance threshold in meters.
 | 
			
		||||
      per  - The timestaps period threshold in mimutes.
 | 
			
		||||
      time - The total timestamps.
 | 
			
		||||
      iter - The total iterations.
 | 
			
		||||
  '''
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
 | 
			
		||||
  parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
 | 
			
		||||
  parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
 | 
			
		||||
  parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
 | 
			
		||||
  parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
@ -391,6 +391,60 @@ def find_lmdks(seq, lmdks, epsilon):
 | 
			
		||||
    lmdks_new = seq[lmdks_seq_new - 1]
 | 
			
		||||
  return lmdks_new, epsilon - eps_sel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def find_lmdks_eps(seq, lmdks, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    Add dummy landmarks to original landmarks.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      seq     - All of the data points.
 | 
			
		||||
      lmdks   - The original landmarks.
 | 
			
		||||
      epsilon - The available privacy budget.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
      lmdks_new - The new landmarks.
 | 
			
		||||
  '''
 | 
			
		||||
  # The new landmarks
 | 
			
		||||
  lmdks_new = lmdks
 | 
			
		||||
  if len(lmdks) > 0 and len(seq) != len(lmdks):
 | 
			
		||||
    # Get landmarks timestamps in sequence
 | 
			
		||||
    lmdks_seq = find_lmdks_seq(seq, lmdks)
 | 
			
		||||
    # Turn landmarks to histogram
 | 
			
		||||
    hist, h = get_hist(get_seq(1, len(seq)), lmdks_seq)
 | 
			
		||||
    # Find all possible options
 | 
			
		||||
    opts = get_opts_from_top_h(get_seq(1, len(seq)), lmdks_seq)
 | 
			
		||||
    # Get landmarks histogram with dummy landmarks
 | 
			
		||||
    hist_new, _ = exp_mech.exponential(hist, opts, exp_mech.score, 1.0, epsilon)
 | 
			
		||||
    # Split sequence in parts of size h 
 | 
			
		||||
    pt_idx = []
 | 
			
		||||
    for idx in range(1, len(seq), h):
 | 
			
		||||
      pt_idx.append([idx, idx + h - 1])
 | 
			
		||||
    pt_idx[-1][1] = len(seq)
 | 
			
		||||
    # Get new landmarks indexes
 | 
			
		||||
    lmdks_seq_new = np.array([], dtype=int)
 | 
			
		||||
    for i, pt in enumerate(pt_idx):
 | 
			
		||||
      # Already landmarks
 | 
			
		||||
      lmdks_seq_pt = lmdks_seq[(lmdks_seq >= pt[0]) & (lmdks_seq <= pt[1])]
 | 
			
		||||
      # Sample randomly from the rest of the sequence
 | 
			
		||||
      size = hist_new[i] - len(lmdks_seq_pt)
 | 
			
		||||
      rglr = np.setdiff1d(np.arange(pt[0], pt[1] + 1), lmdks_seq_pt)
 | 
			
		||||
      # Add already landmarks
 | 
			
		||||
      lmdks_seq_new = np.concatenate([lmdks_seq_new, lmdks_seq_pt])
 | 
			
		||||
      # Add new landmarks
 | 
			
		||||
      if size > 0 and len(rglr) > size:
 | 
			
		||||
        lmdks_seq_new = np.concatenate([lmdks_seq_new,
 | 
			
		||||
          np.random.choice(
 | 
			
		||||
            rglr, 
 | 
			
		||||
            size = size, 
 | 
			
		||||
            replace = False
 | 
			
		||||
          )
 | 
			
		||||
        ])
 | 
			
		||||
    # Get actual landmarks values
 | 
			
		||||
    lmdks_new = seq[lmdks_seq_new - 1]
 | 
			
		||||
  return lmdks_new
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test():
 | 
			
		||||
  # Start and end points of the sequence
 | 
			
		||||
  # # Nonrandom
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user