lmdk_bgt: Tested dynamic
This commit is contained in:
		@ -343,6 +343,58 @@ def adaptive(seq, lmdks, epsilon, inc_rt, dec_rt):
 | 
			
		||||
  return rls_data, bgts, skipped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def dynamic(seq, lmdks, epsilon, inc_rt, dec_rt):
 | 
			
		||||
  '''
 | 
			
		||||
    Dynamic budget allocation.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      seq - The point sequence.
 | 
			
		||||
      lmdks - The landmarks.
 | 
			
		||||
      epsilon - The available privacy budget.
 | 
			
		||||
      inc_rt - Sampling rate increase rate.
 | 
			
		||||
      dec_rt - Sampling rate decrease rate.
 | 
			
		||||
    Returns:
 | 
			
		||||
      rls_data - The perturbed data.
 | 
			
		||||
      bgts - The privacy budget allocation.
 | 
			
		||||
      skipped - The number of skipped releases.
 | 
			
		||||
  '''
 | 
			
		||||
  # Uniform budget allocation
 | 
			
		||||
  bgts = uniform(seq, lmdks, epsilon)
 | 
			
		||||
  # Released
 | 
			
		||||
  rls_data = [None]*len(seq)
 | 
			
		||||
  # The sampling rate
 | 
			
		||||
  samp_rt = 1
 | 
			
		||||
  # Track landmarks
 | 
			
		||||
  lmdk_cur = 0
 | 
			
		||||
  # Track skipped releases
 | 
			
		||||
  skipped = 0
 | 
			
		||||
  for i, p in enumerate(seq):
 | 
			
		||||
    # Check if current point is a landmark
 | 
			
		||||
    if lmdk_lib.is_landmark(p, lmdks):
 | 
			
		||||
      lmdk_cur += 1
 | 
			
		||||
    # Get coordinates
 | 
			
		||||
    loc = (p[1], p[2])
 | 
			
		||||
    if i > 0:
 | 
			
		||||
      eps_dis = bgts[i]*.5
 | 
			
		||||
      dis = lmdk_lib.add_laplace_noise(distance((rls_data[i - 1][1], rls_data[i - 1][2]), loc).km*1000, 1.0, eps_dis)
 | 
			
		||||
      bgts[i] -= eps_dis
 | 
			
		||||
    if i == 0 or distance((rls_data[i - 1][1], rls_data[i - 1][2]), loc).km*1000 > 1/bgts[i]:
 | 
			
		||||
      # Add noise to original data
 | 
			
		||||
      new_loc = lmdk_lib.add_polar_noise(loc, bgts[i])
 | 
			
		||||
      rls_data[i] = [p[0], new_loc[0], new_loc[1], p[3]]
 | 
			
		||||
    else:
 | 
			
		||||
      skipped += 1
 | 
			
		||||
      # Skip current release and approximate with previous
 | 
			
		||||
      rls_data[i] = rls_data[i - 1]
 | 
			
		||||
      if lmdk_lib.is_landmark(p, lmdks):
 | 
			
		||||
        # Allocate the current budget to the following releases uniformly
 | 
			
		||||
        for j in range(i + 1, len(seq)):
 | 
			
		||||
          bgts[j] += bgts[i]/(len(lmdks) - lmdk_cur + 1)
 | 
			
		||||
      # No budget was spent
 | 
			
		||||
      bgts[i] = 0
 | 
			
		||||
  return rls_data, bgts, skipped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def adaptive_cont(seq, lmdks, epsilon, inc_rt, dec_rt):
 | 
			
		||||
  '''
 | 
			
		||||
    Adaptive budget allocation.
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user