Merge branch 'master' of https://git.delkappa.com/manos/the-last-thing
This commit is contained in:
		@ -11,33 +11,34 @@ from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
  The scoring function.
 | 
			
		||||
 | 
			
		||||
  Parameters:
 | 
			
		||||
    data - The data.
 | 
			
		||||
    option - The option to evaluate.
 | 
			
		||||
  Returns:
 | 
			
		||||
    The score for the option.
 | 
			
		||||
'''
 | 
			
		||||
def score(data, option):
 | 
			
		||||
  '''
 | 
			
		||||
    The scoring function.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      data - The data.
 | 
			
		||||
      option - The option to evaluate.
 | 
			
		||||
    Returns:
 | 
			
		||||
      The score for the option.
 | 
			
		||||
  '''
 | 
			
		||||
  return (option.sum() - data.sum())
 | 
			
		||||
  # return lmdk_lib.get_norm(data, option)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
  The exponential mechanism.
 | 
			
		||||
 | 
			
		||||
  Parameters:
 | 
			
		||||
    x - The data.
 | 
			
		||||
    R - The possible outputs.
 | 
			
		||||
    u - The scoring function.
 | 
			
		||||
    delta - The sensitivity of the scoring function.
 | 
			
		||||
    epsilon - The privacy budget.
 | 
			
		||||
  Returns:
 | 
			
		||||
    res - A randomly sampled output.
 | 
			
		||||
    pr - The PDF of all possible outputs.
 | 
			
		||||
'''
 | 
			
		||||
def exponential(x, R, u, delta, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    The exponential mechanism.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      x - The data.
 | 
			
		||||
      R - The possible outputs.
 | 
			
		||||
      u - The scoring function.
 | 
			
		||||
      delta - The sensitivity of the scoring function.
 | 
			
		||||
      epsilon - The privacy budget.
 | 
			
		||||
    Returns:
 | 
			
		||||
      res - A randomly sampled output.
 | 
			
		||||
      pr - The PDF of all possible outputs.
 | 
			
		||||
  '''
 | 
			
		||||
  # Calculate the score for each element of R
 | 
			
		||||
  scores = [u(x, r) for r in R]
 | 
			
		||||
  # Normalize the scores between 0 and 1
 | 
			
		||||
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/bgt_cmp/T-drive-sel.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/bgt_cmp/T-drive-sel.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							@ -1761,6 +1761,15 @@
 | 
			
		||||
  year      = {2017}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@inproceedings{meshgi2015expanding,
 | 
			
		||||
  title={Expanding histogram of colors with gridding to improve tracking accuracy},
 | 
			
		||||
  author={Meshgi, Kourosh and Ishii, Shin},
 | 
			
		||||
  booktitle={2015 14th IAPR International Conference on Machine Vision Applications (MVA)},
 | 
			
		||||
  pages={475--479},
 | 
			
		||||
  year={2015},
 | 
			
		||||
  organization={IEEE}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@inproceedings{wang2017privacy,
 | 
			
		||||
  title        = {Privacy Preserving Anonymity for Periodical SRS Data Publishing},
 | 
			
		||||
  author       = {Wang, Jie-Teng and Lin, Wen-Yang},
 | 
			
		||||
 | 
			
		||||
@ -39,10 +39,16 @@ In Example~\ref{ex:lmdk-risk}, we demonstrate the extreme case of the applicatio
 | 
			
		||||
\SetKwData{evalCur}{evalCur}
 | 
			
		||||
\SetKwData{evalOrig}{evalOrig}
 | 
			
		||||
\SetKwData{evalSum}{evalSum}
 | 
			
		||||
\SetKwData{h}{h}
 | 
			
		||||
\SetKwData{hi}{h$_i$}
 | 
			
		||||
\SetKwData{hist}{hist}
 | 
			
		||||
\SetKwData{histCur}{histCur}
 | 
			
		||||
\SetKwData{histTmp}{histTmp}
 | 
			
		||||
\SetKwData{metricCur}{metricCur}
 | 
			
		||||
\SetKwData{metricOrig}{metricOrig}
 | 
			
		||||
\SetKwData{opt}{opt}
 | 
			
		||||
\SetKwData{opti}{opt$_i$}
 | 
			
		||||
\SetKwData{opts}{opts}
 | 
			
		||||
\SetKwData{optim}{optim}
 | 
			
		||||
\SetKwData{optimi}{optim$_i$}
 | 
			
		||||
\SetKwData{opts}{opts}
 | 
			
		||||
@ -51,7 +57,10 @@ In Example~\ref{ex:lmdk-risk}, we demonstrate the extreme case of the applicatio
 | 
			
		||||
\SetKwFunction{calcMetric}{calcMetric}
 | 
			
		||||
\SetKwFunction{evalSeq}{evalSeq}
 | 
			
		||||
\SetKwFunction{getCombs}{getCombs}
 | 
			
		||||
\SetKwFunction{getDiff}{getDiff}
 | 
			
		||||
\SetKwFunction{getHist}{getHist}
 | 
			
		||||
\SetKwFunction{getOpts}{getOpts}
 | 
			
		||||
\SetKwFunction{getNorm}{getNorm}
 | 
			
		||||
 | 
			
		||||
\input{problem/theotherthing/contribution}
 | 
			
		||||
\input{problem/theotherthing/problem}
 | 
			
		||||
 | 
			
		||||
@ -42,16 +42,13 @@ It finds the option that is the most \emph{similar} to the original (Lines~{\ref
 | 
			
		||||
  % Evaluate the original
 | 
			
		||||
  \evalOrig $\leftarrow$ \evalSeq{$T, \emptyset, L$}\;
 | 
			
		||||
 | 
			
		||||
  % Get all possible option combinations
 | 
			
		||||
  \opts $\leftarrow$ \getOpts{$T, L$}\;
 | 
			
		||||
 | 
			
		||||
  % Track the minimum (best) evaluation
 | 
			
		||||
  \diffMin $\leftarrow$ $\infty$\;
 | 
			
		||||
 | 
			
		||||
  % Track the optimal sequence (the one with the best evaluation)
 | 
			
		||||
  \optim $\leftarrow$ $[]$\;
 | 
			
		||||
  \opts $\leftarrow$ $[]$\;
 | 
			
		||||
 | 
			
		||||
  \ForEach{\opt $\in$ \opts}{ \label{algo:lmdk-sel-opt-for-each}
 | 
			
		||||
  \ForEach{\opt $\in$ \getOpts{$T, L$}}{ \label{algo:lmdk-sel-opt-for-each}
 | 
			
		||||
    \evalCur $\leftarrow 0$\;
 | 
			
		||||
    \ForEach{\opti $\in$ \opt}{
 | 
			
		||||
      \evalCur $\leftarrow$ \evalCur $+$ \evalSeq{$T, \opti, L$}/\#\opt\; \label{algo:lmdk-sel-opt-comparison}
 | 
			
		||||
@ -60,10 +57,10 @@ It finds the option that is the most \emph{similar} to the original (Lines~{\ref
 | 
			
		||||
    \diffCur $\leftarrow \left|\evalCur - \evalOrig\right|$\;
 | 
			
		||||
    \If{\diffCur $<$ \diffMin}{
 | 
			
		||||
      \diffMin $\leftarrow$ \diffCur\;
 | 
			
		||||
      \optim $\leftarrow$ \opt\;
 | 
			
		||||
      \opts $\leftarrow$ \opt\;
 | 
			
		||||
    }
 | 
			
		||||
  } \label{algo:lmdk-sel-opt-end}
 | 
			
		||||
  \Return{\optim}
 | 
			
		||||
  \Return{\opts}
 | 
			
		||||
\end{algorithm}
 | 
			
		||||
 | 
			
		||||
Algorithm~\ref{algo:lmdk-sel-opt} guarantees to return the optimal set of dummy {\thethings} with regard to the original set $L$.
 | 
			
		||||
@ -73,7 +70,7 @@ Next, we present a heuristic solution with improved time and space requirements.
 | 
			
		||||
 | 
			
		||||
\paragraph{Heuristic}
 | 
			
		||||
Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology.
 | 
			
		||||
At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $T \setminus L$.
 | 
			
		||||
At each step it selects a new timestamp, that corresponds to a regular ({non-\thething}) event from $T \setminus L$, to create an option.
 | 
			
		||||
 | 
			
		||||
\begin{algorithm}
 | 
			
		||||
  \caption{Heuristic dummy {\thething} set options selection}
 | 
			
		||||
@ -82,14 +79,14 @@ At each step it selects a new timestamp that corresponds to a regular ({non-\the
 | 
			
		||||
  \DontPrintSemicolon
 | 
			
		||||
 | 
			
		||||
  \KwData{$T, L$}
 | 
			
		||||
  \KwResult{\optim}
 | 
			
		||||
  \KwResult{\opts}
 | 
			
		||||
  \BlankLine
 | 
			
		||||
 | 
			
		||||
  % Evaluate the original
 | 
			
		||||
  \evalOrig $\leftarrow$ \evalSeq{$T, \emptyset, L$}\;
 | 
			
		||||
 | 
			
		||||
  % Get all possible option combinations
 | 
			
		||||
  \optim $\leftarrow$ $[]$\;
 | 
			
		||||
  \opts $\leftarrow$ $[]$\;
 | 
			
		||||
 | 
			
		||||
  $L' \leftarrow L$\;
 | 
			
		||||
 | 
			
		||||
@ -110,45 +107,111 @@ At each step it selects a new timestamp that corresponds to a regular ({non-\the
 | 
			
		||||
      \If{\diffCur $<$ \diffMin}{
 | 
			
		||||
        \diffMin $\leftarrow$ \diffCur\;
 | 
			
		||||
        \optimi $\leftarrow$ \reg\;
 | 
			
		||||
      }\label{algo:lmdk-sel-heur-comparison-end}
 | 
			
		||||
      }\label{algo:lmdk-sel-heur-cmp-end}
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    % Save new point to landmarks
 | 
			
		||||
    $L'$.add(\optimi)\;
 | 
			
		||||
 | 
			
		||||
    % Add new option
 | 
			
		||||
    \optim.append($L' \setminus L$)\;
 | 
			
		||||
    \opts.append($L' \setminus L$)\;
 | 
			
		||||
  }\label{algo:lmdk-sel-heur-end}
 | 
			
		||||
 | 
			
		||||
  \Return{\optim}
 | 
			
		||||
  \Return{\opts}
 | 
			
		||||
\end{algorithm}
 | 
			
		||||
 | 
			
		||||
Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}).
 | 
			
		||||
Similar to Algorithm~\ref{algo:lmdk-sel-opt}, it selects new options based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-cmp-end}}).
 | 
			
		||||
This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$L' = T$.
 | 
			
		||||
 | 
			
		||||
In terms of complexity: given $n$ regular events it requires $\mathcal{O}(n^2)$ time and space.
 | 
			
		||||
In terms of complexity, given $n$ regular events it requires $\mathcal{O}(n^2)$ time and space.
 | 
			
		||||
Note that the reverse heuristic approach, i.e.,~starting with $T$ {\thethings} and removing until $L$, performs similarly with Algorithm~\ref{algo:lmdk-sel-heur}.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\paragraph{Partitioned}
 | 
			
		||||
We improve the complexity of Algorithm~\ref{algo:lmdk-sel-opt} by partitioning the {\thething} timestamp sequence $L$.
 | 
			
		||||
Algorithm~\ref{algo:lmdk-sel-hist}, \getHist generates a histogram from $L$ with bins of size \h.
 | 
			
		||||
We find \h by using the Freedman–Diaconis rule which is resilient to outliers and takes into account the data variability and data size~\cite{meshgi2015expanding}.
 | 
			
		||||
For every possible histogram version, the \getDiff function finds the difference between two histograms; for this operation we utilize the Euclidean distance~(see Section~\ref{subsec:sel-utl} for more details).
 | 
			
		||||
 | 
			
		||||
\mk{WIP: Histograms}
 | 
			
		||||
\begin{algorithm}
 | 
			
		||||
  \caption{Partitioned dummy {\thething} set options selection}
 | 
			
		||||
  \label{algo:lmdk-sel-hist}
 | 
			
		||||
 | 
			
		||||
  \DontPrintSemicolon
 | 
			
		||||
 | 
			
		||||
  \KwData{$T, L$}
 | 
			
		||||
  \KwResult{\opts}
 | 
			
		||||
  \BlankLine
 | 
			
		||||
 | 
			
		||||
  \hist, \h $\leftarrow$ \getHist{$T, L$}\;
 | 
			
		||||
 | 
			
		||||
  \histCur $\leftarrow$ hist\;
 | 
			
		||||
 | 
			
		||||
  \opts $\leftarrow$ $[]$\;
 | 
			
		||||
 | 
			
		||||
  \While{sum($L'$) $\neq$ len($T$)}{ \label{algo:lmdk-sel-hist-while}
 | 
			
		||||
    % Track the minimum (best) evaluation
 | 
			
		||||
    \diffMin $\leftarrow$ $\infty$\;
 | 
			
		||||
 | 
			
		||||
    % The candidate option
 | 
			
		||||
    \opt $\leftarrow$ \histCur\;
 | 
			
		||||
 | 
			
		||||
    % Check every possibility
 | 
			
		||||
    \ForEach{\hi \reg $L'$}{ \label{algo:lmdk-sel-hist-cmp-start}
 | 
			
		||||
 | 
			
		||||
      % Can we add one more point?
 | 
			
		||||
      \If{\hi $+$ $1$ $\leq$ \h}{
 | 
			
		||||
        \histTmp $\leftarrow$ \histCur\;
 | 
			
		||||
        \histTmp$[i]$ $\leftarrow$ \histTmp$[i]$ $+$ $1$\;
 | 
			
		||||
        % Find difference from original
 | 
			
		||||
        \diffCur $\leftarrow$ \getDiff{\hist, \histTmp}\;
 | 
			
		||||
 | 
			
		||||
        % Remember if it is the best that you've seen
 | 
			
		||||
        \If{\diffCur $<$ \diffMin}{ \label{algo:lmdk-sel-hist-cmp}
 | 
			
		||||
          \diffMin $\leftarrow$ \diffCur\;
 | 
			
		||||
          \opt $\leftarrow$ \histTmp\;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    } \label{algo:lmdk-sel-hist-cmp-end}
 | 
			
		||||
 | 
			
		||||
    % Update current histogram
 | 
			
		||||
    \histCur $\leftarrow$ \opt\;
 | 
			
		||||
    % Add current best to options
 | 
			
		||||
    \opts $\leftarrow$ \opt\;
 | 
			
		||||
 | 
			
		||||
  } \label{algo:lmdk-sel-hist-end}
 | 
			
		||||
 | 
			
		||||
  \Return{\opts}
 | 
			
		||||
\end{algorithm}
 | 
			
		||||
 | 
			
		||||
Between Lines~{\ref{algo:lmdk-sel-hist-cmp-start}-\ref{algo:lmdk-sel-hist-cmp-end}} we check every possible histogram version by incrementing each bin by $1$ and comparing it to the original (Line~\ref{algo:lmdk-sel-hist-cmp}).
 | 
			
		||||
In the end of the process, we return \opts which contains all the versions of \hist that are closest to \hist for all possible sizes of \hist.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsubsection{Privacy-preserving option selection}
 | 
			
		||||
\label{subsec:lmdk-opt-sel}
 | 
			
		||||
 | 
			
		||||
\mk{WIP}
 | 
			
		||||
The Algorithms of Section~\ref{subsec:lmdk-set-opts} return a set of possible versions of the original {\thething} set $L$ by adding extra timestamps in it from the series of events at timestamps $T \supseteq L$.
 | 
			
		||||
In the next step of the process, we randomly select a set by utilizing the exponential mechanism (Section~\ref{subsec:prv-mech}).
 | 
			
		||||
Prior to selecting a set, the exponential mechanism evaluates each set using a score function.
 | 
			
		||||
 | 
			
		||||
One way evaluate each set is by taking into account the temporal position the events in the sequence.
 | 
			
		||||
% Nearby events
 | 
			
		||||
Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}.
 | 
			
		||||
Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall.
 | 
			
		||||
This leads to worse data utility.
 | 
			
		||||
 | 
			
		||||
% Depending on the {\thething} discovery technique
 | 
			
		||||
The values of events near a {\thething} are usually similar to that of the latter.
 | 
			
		||||
Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget.
 | 
			
		||||
Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility. 
 | 
			
		||||
 | 
			
		||||
% Distant events
 | 
			
		||||
However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events.
 | 
			
		||||
Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.
 | 
			
		||||
However, indicating the existence of dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events.
 | 
			
		||||
Hence, choosing dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.
 | 
			
		||||
 | 
			
		||||
Another approach for the score function is to consider the number of events in each set.
 | 
			
		||||
On the one hand, sets with more dummy {\thethings} may render actual {\thethings} more indistinguishable probabilistically.
 | 
			
		||||
That is due to the fact that, it is harder for an adversary to pick a {\thething} when the ratio of {\thethings} to the size of the set gets lower.
 | 
			
		||||
On the other hand, more dummy {\thethings} lead to distributing the privacy budget to more events, and therefore investing less at each timestamp.
 | 
			
		||||
Thus, providing a better level of privacy protection.
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user