code: Experimenting with copenhagen data
This commit is contained in:
		
							
								
								
									
										187
									
								
								code/expt/bgt_cmp_copenhagen.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										187
									
								
								code/expt/bgt_cmp_copenhagen.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,187 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from geopy.distance import distance
 | 
			
		||||
import lmdk_bgt
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  res_file = '/home/manos/Cloud/Data/Copenhagen/Results.zip'
 | 
			
		||||
  # Contacts for all users
 | 
			
		||||
  cont_data = lmdk_lib.load_data(args, 'cont')
 | 
			
		||||
  # Contacts for landmark's percentages for all users
 | 
			
		||||
  lmdk_data = lmdk_lib.load_data(args, 'usrs_expt')
 | 
			
		||||
  # The name of the dataset
 | 
			
		||||
  d = 'Copenhagen'
 | 
			
		||||
  # The user's id
 | 
			
		||||
  uid = '623'
 | 
			
		||||
  # The landmarks percentages
 | 
			
		||||
  lmdks_pct = [0, 20, 40, 60, 80, 100]
 | 
			
		||||
  # The privacy budget
 | 
			
		||||
  epsilon = 1.0
 | 
			
		||||
 | 
			
		||||
  # Number of methods
 | 
			
		||||
  n = 6
 | 
			
		||||
  # Width of bars
 | 
			
		||||
  bar_width = 1/(n + 1)
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(lmdks_pct))
 | 
			
		||||
  x_margin = bar_width*(n/2 + 1)
 | 
			
		||||
 | 
			
		||||
  print('\n##############################', d, '\n')
 | 
			
		||||
  # Get user's contacts sequence
 | 
			
		||||
  seq = cont_data[cont_data[:, 1] == float(uid)]
 | 
			
		||||
 | 
			
		||||
  # Initialize plot
 | 
			
		||||
  lmdk_lib.plot_init()
 | 
			
		||||
  # The x axis
 | 
			
		||||
  plt.xticks(x_i, np.array(lmdks_pct, int))
 | 
			
		||||
  plt.xlabel('Landmarks percentage')  # Set x axis label.
 | 
			
		||||
  plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (m)')  # Set y axis label.
 | 
			
		||||
  plt.yscale('log')
 | 
			
		||||
  plt.ylim(1, 100000000)
 | 
			
		||||
  # Bar offset
 | 
			
		||||
  x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
  mae_u = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_s = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_a = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_r = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_d = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_i = np.zeros(len(lmdks_pct))
 | 
			
		||||
  for i, pct in enumerate(lmdks_pct):
 | 
			
		||||
    # Find landmarks
 | 
			
		||||
    lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
 | 
			
		||||
 | 
			
		||||
    print(pct, np.shape(lmdks)[0]/np.shape(seq)[0])
 | 
			
		||||
 | 
			
		||||
    # for _ in range(args.iter):
 | 
			
		||||
    #   # Skip
 | 
			
		||||
    #   rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, epsilon)
 | 
			
		||||
    #   mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
 | 
			
		||||
 | 
			
		||||
    #   # Uniform
 | 
			
		||||
    #   rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, epsilon)
 | 
			
		||||
    #   mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
 | 
			
		||||
 | 
			
		||||
    #   # Adaptive
 | 
			
		||||
    #   rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, epsilon, .5, .5)
 | 
			
		||||
    #   mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
 | 
			
		||||
 | 
			
		||||
    #   # Sample
 | 
			
		||||
    #   rls_data_r, _, _ = lmdk_bgt.sample(seq, lmdks, epsilon)
 | 
			
		||||
    #   mae_r[i] += lmdk_bgt.mae(seq, rls_data_r)/args.iter
 | 
			
		||||
 | 
			
		||||
    #   # Discount
 | 
			
		||||
    #   rls_data_d, _, _ = lmdk_bgt.discount(seq, lmdks, epsilon)
 | 
			
		||||
    #   mae_d[i] += lmdk_bgt.mae(seq, rls_data_d)/args.iter
 | 
			
		||||
 | 
			
		||||
    #   # Incremental
 | 
			
		||||
    #   rls_data_i, _, _ = lmdk_bgt.incremental(seq, lmdks, epsilon, .5)
 | 
			
		||||
    #   mae_i[i] += lmdk_bgt.mae(seq, rls_data_i)/args.iter
 | 
			
		||||
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_s,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Skip',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
  # # Plot bars
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_u,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Uniform',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_a,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Adaptive',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_r,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Sample',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_d,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Discount',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
  # plt.bar(
 | 
			
		||||
  #   x_i + x_offset,
 | 
			
		||||
  #   mae_i,
 | 
			
		||||
  #   bar_width,
 | 
			
		||||
  #   label='Incremental',
 | 
			
		||||
  #   linewidth=lmdk_lib.line_width
 | 
			
		||||
  # )
 | 
			
		||||
  # x_offset += bar_width
 | 
			
		||||
 | 
			
		||||
  # path = str('rslt/bgt_cmp/' + d)
 | 
			
		||||
  # # Plot legend
 | 
			
		||||
  # lmdk_lib.plot_legend()
 | 
			
		||||
  # # Show plot
 | 
			
		||||
  # # plt.show()
 | 
			
		||||
  # # Save plot
 | 
			
		||||
  # lmdk_lib.save_plot(path + '.pdf')
 | 
			
		||||
  print('[OK]', flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
  '''
 | 
			
		||||
    Parse arguments.
 | 
			
		||||
 | 
			
		||||
    Optional:
 | 
			
		||||
      res  - The results archive file.
 | 
			
		||||
      iter - The total iterations.
 | 
			
		||||
  '''
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/Copenhagen/Results.zip')
 | 
			
		||||
  parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time   : %.4fs' % (end_time - start_time))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
		Reference in New Issue
	
	Block a user