expt_lmdk_sel: Testing the Pareto principle
This commit is contained in:
		
							
								
								
									
										107
									
								
								code/expt/expt_lmdk_sel-pareto.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								code/expt/expt_lmdk_sel-pareto.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,107 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import lmdk_sel
 | 
			
		||||
import exp_mech
 | 
			
		||||
import numpy as np
 | 
			
		||||
import os
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  # Privacy goal
 | 
			
		||||
  epsilon = [.001, .01, .1, 1.0, 10.0, 100.0]
 | 
			
		||||
  # Number of timestamps
 | 
			
		||||
  seq = lmdk_lib.get_seq(1, args.time)
 | 
			
		||||
  # Distribution type
 | 
			
		||||
  dist_type = np.array(range(-1, 4))
 | 
			
		||||
  # Number of landmarks
 | 
			
		||||
  lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5)))
 | 
			
		||||
  # Width of bars
 | 
			
		||||
  bar_width = 1/(len(epsilon) + 1)
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(lmdk_n))
 | 
			
		||||
  x_margin = bar_width*(len(epsilon)/2 + 1)
 | 
			
		||||
  for d_i, d in enumerate(dist_type):
 | 
			
		||||
    # Logging
 | 
			
		||||
    title =  lmdk_lib.dist_type_to_str(d) + ' landmark distribution'
 | 
			
		||||
    print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
 | 
			
		||||
    # Initialize plot
 | 
			
		||||
    lmdk_lib.plot_init()
 | 
			
		||||
    # The x axis
 | 
			
		||||
    plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
 | 
			
		||||
    plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
			
		||||
    plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
 | 
			
		||||
    # The y axis
 | 
			
		||||
    plt.ylabel('Mean absolute error')  # Set y axis label.
 | 
			
		||||
    # plt.ylim(0, len(seq)*1.5)
 | 
			
		||||
    # Bar offset
 | 
			
		||||
    x_offset = -(bar_width/2)*(len(epsilon) - 1)
 | 
			
		||||
    for e_i, e in enumerate(epsilon):
 | 
			
		||||
      mae = np.zeros(len(lmdk_n))
 | 
			
		||||
      for n_i, n in enumerate(lmdk_n):
 | 
			
		||||
        for r in range(args.reps):
 | 
			
		||||
          lmdks = lmdk_lib.get_lmdks(seq, n, d)
 | 
			
		||||
          hist, h = lmdk_lib.get_hist(seq, lmdks)
 | 
			
		||||
          opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
 | 
			
		||||
          delta = 1.0
 | 
			
		||||
          res, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, delta, e)
 | 
			
		||||
          mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps
 | 
			
		||||
      # Plot bar for current epsilon
 | 
			
		||||
      plt.bar(
 | 
			
		||||
        x_i + x_offset,
 | 
			
		||||
        mae,
 | 
			
		||||
        bar_width,
 | 
			
		||||
        label=u'\u03B5 = ' + str("{:.0e}".format(e)),
 | 
			
		||||
        linewidth=lmdk_lib.line_width
 | 
			
		||||
      )
 | 
			
		||||
      # Change offset for next bar
 | 
			
		||||
      x_offset += bar_width
 | 
			
		||||
    path = str('../../rslt/lmdk_sel-pareto/' + title)
 | 
			
		||||
    # Plot legend
 | 
			
		||||
    lmdk_lib.plot_legend()
 | 
			
		||||
    # Show plot
 | 
			
		||||
    # plt.show()
 | 
			
		||||
    # Save plot
 | 
			
		||||
    lmdk_lib.save_plot(path + '.pdf')
 | 
			
		||||
    print('[OK]', flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
  Parse arguments.
 | 
			
		||||
 | 
			
		||||
  Optional:
 | 
			
		||||
    reps - The number of repetitions.
 | 
			
		||||
    time - The time limit of the sequence.
 | 
			
		||||
'''
 | 
			
		||||
def parse_args():
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
 | 
			
		||||
  parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
@ -62,6 +62,47 @@ def exponential(x, R, u, delta, epsilon):
 | 
			
		||||
    return np.array([]), pr
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
  The exponential mechanism.
 | 
			
		||||
 | 
			
		||||
  Parameters:
 | 
			
		||||
    x - The data.
 | 
			
		||||
    R - The possible outputs.
 | 
			
		||||
    u - The scoring function.
 | 
			
		||||
    delta - The sensitivity of the scoring function.
 | 
			
		||||
    epsilon - The privacy budget.
 | 
			
		||||
  Returns:
 | 
			
		||||
    res - A randomly sampled output.
 | 
			
		||||
    pr - The PDF of all possible outputs.
 | 
			
		||||
'''
 | 
			
		||||
def exponential_pareto(x, R, u, delta, epsilon):
 | 
			
		||||
  # Calculate the score for each element of R
 | 
			
		||||
  scores = [u(x, r) for r in R]
 | 
			
		||||
  # Keep the top 20%
 | 
			
		||||
  n = int(len(scores)*.2)
 | 
			
		||||
  scores = np.sort(scores)[-n : ]
 | 
			
		||||
  # Normalize the scores between 0 and 1
 | 
			
		||||
  # (the higher, the better the utility)
 | 
			
		||||
  scores = 1 - (scores - np.min(scores))/(np.max(scores) - np.min(scores))
 | 
			
		||||
 | 
			
		||||
  # Calculate the probability for each element, based on its score
 | 
			
		||||
  pr = [np.exp(epsilon*score/(2*delta)) for score in scores]
 | 
			
		||||
 | 
			
		||||
  # Normalize the probabilities so that they sum to 1
 | 
			
		||||
  pr = pr/np.linalg.norm(pr, ord = 1)
 | 
			
		||||
 | 
			
		||||
  # Debugging
 | 
			
		||||
  # print(R[np.argmax(pr)], pr.max(), scores[np.argmax(pr)])
 | 
			
		||||
  # print(R[np.argmin(pr)], pr.min(), scores[np.argmin(pr)])
 | 
			
		||||
  # print(abs(pr.max() - pr.min()), abs(scores[np.argmax(pr)] - scores[np.argmin(pr)]))
 | 
			
		||||
 | 
			
		||||
  # Choose an element from R based on the probabilities
 | 
			
		||||
  if len(pr) > 0:
 | 
			
		||||
    return R[np.random.choice(range(n), 1, p = pr)[0]], pr
 | 
			
		||||
  else:
 | 
			
		||||
    return np.array([]), pr
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
  start, end = 1.0, 10.0
 | 
			
		||||
  scale = 1.0
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Bimodal landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Bimodal landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Left-skewed landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Left-skewed landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Right-skewed landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Right-skewed landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Symmetric landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Symmetric landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Uniform landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel-pareto/Uniform landmark distribution.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user