expt_lmdk_sel: Testing the Pareto principle
This commit is contained in:
parent
dbebff7601
commit
63fd33f05a
107
code/expt/expt_lmdk_sel-pareto.py
Normal file
107
code/expt/expt_lmdk_sel-pareto.py
Normal file
@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
sys.path.insert(1, '../lib')
|
||||
import argparse
|
||||
import lmdk_lib
|
||||
import lmdk_sel
|
||||
import exp_mech
|
||||
import numpy as np
|
||||
import os
|
||||
from matplotlib import pyplot as plt
|
||||
import time
|
||||
|
||||
|
||||
def main(args):
|
||||
# Privacy goal
|
||||
epsilon = [.001, .01, .1, 1.0, 10.0, 100.0]
|
||||
# Number of timestamps
|
||||
seq = lmdk_lib.get_seq(1, args.time)
|
||||
# Distribution type
|
||||
dist_type = np.array(range(-1, 4))
|
||||
# Number of landmarks
|
||||
lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5)))
|
||||
# Width of bars
|
||||
bar_width = 1/(len(epsilon) + 1)
|
||||
# The x axis
|
||||
x_i = np.arange(len(lmdk_n))
|
||||
x_margin = bar_width*(len(epsilon)/2 + 1)
|
||||
for d_i, d in enumerate(dist_type):
|
||||
# Logging
|
||||
title = lmdk_lib.dist_type_to_str(d) + ' landmark distribution'
|
||||
print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
|
||||
# Initialize plot
|
||||
lmdk_lib.plot_init()
|
||||
# The x axis
|
||||
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
|
||||
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||
# The y axis
|
||||
plt.ylabel('Mean absolute error') # Set y axis label.
|
||||
# plt.ylim(0, len(seq)*1.5)
|
||||
# Bar offset
|
||||
x_offset = -(bar_width/2)*(len(epsilon) - 1)
|
||||
for e_i, e in enumerate(epsilon):
|
||||
mae = np.zeros(len(lmdk_n))
|
||||
for n_i, n in enumerate(lmdk_n):
|
||||
for r in range(args.reps):
|
||||
lmdks = lmdk_lib.get_lmdks(seq, n, d)
|
||||
hist, h = lmdk_lib.get_hist(seq, lmdks)
|
||||
opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
|
||||
delta = 1.0
|
||||
res, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, delta, e)
|
||||
mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps
|
||||
# Plot bar for current epsilon
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae,
|
||||
bar_width,
|
||||
label=u'\u03B5 = ' + str("{:.0e}".format(e)),
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
# Change offset for next bar
|
||||
x_offset += bar_width
|
||||
path = str('../../rslt/lmdk_sel-pareto/' + title)
|
||||
# Plot legend
|
||||
lmdk_lib.plot_legend()
|
||||
# Show plot
|
||||
# plt.show()
|
||||
# Save plot
|
||||
lmdk_lib.save_plot(path + '.pdf')
|
||||
print('[OK]', flush=True)
|
||||
|
||||
|
||||
'''
|
||||
Parse arguments.
|
||||
|
||||
Optional:
|
||||
reps - The number of repetitions.
|
||||
time - The time limit of the sequence.
|
||||
'''
|
||||
def parse_args():
|
||||
# Create argument parser.
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Mandatory arguments.
|
||||
|
||||
# Optional arguments.
|
||||
parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
|
||||
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
|
||||
|
||||
# Parse arguments.
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
start_time = time.time()
|
||||
main(parse_args())
|
||||
end_time = time.time()
|
||||
print('##############################')
|
||||
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
||||
print('##############################')
|
||||
except KeyboardInterrupt:
|
||||
print('Interrupted by user.')
|
||||
exit()
|
@ -62,6 +62,47 @@ def exponential(x, R, u, delta, epsilon):
|
||||
return np.array([]), pr
|
||||
|
||||
|
||||
'''
|
||||
The exponential mechanism.
|
||||
|
||||
Parameters:
|
||||
x - The data.
|
||||
R - The possible outputs.
|
||||
u - The scoring function.
|
||||
delta - The sensitivity of the scoring function.
|
||||
epsilon - The privacy budget.
|
||||
Returns:
|
||||
res - A randomly sampled output.
|
||||
pr - The PDF of all possible outputs.
|
||||
'''
|
||||
def exponential_pareto(x, R, u, delta, epsilon):
|
||||
# Calculate the score for each element of R
|
||||
scores = [u(x, r) for r in R]
|
||||
# Keep the top 20%
|
||||
n = int(len(scores)*.2)
|
||||
scores = np.sort(scores)[-n : ]
|
||||
# Normalize the scores between 0 and 1
|
||||
# (the higher, the better the utility)
|
||||
scores = 1 - (scores - np.min(scores))/(np.max(scores) - np.min(scores))
|
||||
|
||||
# Calculate the probability for each element, based on its score
|
||||
pr = [np.exp(epsilon*score/(2*delta)) for score in scores]
|
||||
|
||||
# Normalize the probabilities so that they sum to 1
|
||||
pr = pr/np.linalg.norm(pr, ord = 1)
|
||||
|
||||
# Debugging
|
||||
# print(R[np.argmax(pr)], pr.max(), scores[np.argmax(pr)])
|
||||
# print(R[np.argmin(pr)], pr.min(), scores[np.argmin(pr)])
|
||||
# print(abs(pr.max() - pr.min()), abs(scores[np.argmax(pr)] - scores[np.argmin(pr)]))
|
||||
|
||||
# Choose an element from R based on the probabilities
|
||||
if len(pr) > 0:
|
||||
return R[np.random.choice(range(n), 1, p = pr)[0]], pr
|
||||
else:
|
||||
return np.array([]), pr
|
||||
|
||||
|
||||
def main():
|
||||
start, end = 1.0, 10.0
|
||||
scale = 1.0
|
||||
|
BIN
rslt/lmdk_sel-pareto/Bimodal landmark distribution.pdf
Normal file
BIN
rslt/lmdk_sel-pareto/Bimodal landmark distribution.pdf
Normal file
Binary file not shown.
BIN
rslt/lmdk_sel-pareto/Left-skewed landmark distribution.pdf
Normal file
BIN
rslt/lmdk_sel-pareto/Left-skewed landmark distribution.pdf
Normal file
Binary file not shown.
BIN
rslt/lmdk_sel-pareto/Right-skewed landmark distribution.pdf
Normal file
BIN
rslt/lmdk_sel-pareto/Right-skewed landmark distribution.pdf
Normal file
Binary file not shown.
BIN
rslt/lmdk_sel-pareto/Symmetric landmark distribution.pdf
Normal file
BIN
rslt/lmdk_sel-pareto/Symmetric landmark distribution.pdf
Normal file
Binary file not shown.
BIN
rslt/lmdk_sel-pareto/Uniform landmark distribution.pdf
Normal file
BIN
rslt/lmdk_sel-pareto/Uniform landmark distribution.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user