expt_lmdk_sel: Testing the Pareto principle

This commit is contained in:
Manos Katsomallos 2021-10-05 23:40:15 +02:00
parent dbebff7601
commit 63fd33f05a
7 changed files with 148 additions and 0 deletions

View File

@ -0,0 +1,107 @@
#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
import lmdk_lib
import lmdk_sel
import exp_mech
import numpy as np
import os
from matplotlib import pyplot as plt
import time
def main(args):
# Privacy goal
epsilon = [.001, .01, .1, 1.0, 10.0, 100.0]
# Number of timestamps
seq = lmdk_lib.get_seq(1, args.time)
# Distribution type
dist_type = np.array(range(-1, 4))
# Number of landmarks
lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5)))
# Width of bars
bar_width = 1/(len(epsilon) + 1)
# The x axis
x_i = np.arange(len(lmdk_n))
x_margin = bar_width*(len(epsilon)/2 + 1)
for d_i, d in enumerate(dist_type):
# Logging
title = lmdk_lib.dist_type_to_str(d) + ' landmark distribution'
print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
# Initialize plot
lmdk_lib.plot_init()
# The x axis
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
# The y axis
plt.ylabel('Mean absolute error') # Set y axis label.
# plt.ylim(0, len(seq)*1.5)
# Bar offset
x_offset = -(bar_width/2)*(len(epsilon) - 1)
for e_i, e in enumerate(epsilon):
mae = np.zeros(len(lmdk_n))
for n_i, n in enumerate(lmdk_n):
for r in range(args.reps):
lmdks = lmdk_lib.get_lmdks(seq, n, d)
hist, h = lmdk_lib.get_hist(seq, lmdks)
opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
delta = 1.0
res, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, delta, e)
mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps
# Plot bar for current epsilon
plt.bar(
x_i + x_offset,
mae,
bar_width,
label=u'\u03B5 = ' + str("{:.0e}".format(e)),
linewidth=lmdk_lib.line_width
)
# Change offset for next bar
x_offset += bar_width
path = str('../../rslt/lmdk_sel-pareto/' + title)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(path + '.pdf')
print('[OK]', flush=True)
'''
Parse arguments.
Optional:
reps - The number of repetitions.
time - The time limit of the sequence.
'''
def parse_args():
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()

View File

@ -62,6 +62,47 @@ def exponential(x, R, u, delta, epsilon):
return np.array([]), pr return np.array([]), pr
'''
The exponential mechanism.
Parameters:
x - The data.
R - The possible outputs.
u - The scoring function.
delta - The sensitivity of the scoring function.
epsilon - The privacy budget.
Returns:
res - A randomly sampled output.
pr - The PDF of all possible outputs.
'''
def exponential_pareto(x, R, u, delta, epsilon):
# Calculate the score for each element of R
scores = [u(x, r) for r in R]
# Keep the top 20%
n = int(len(scores)*.2)
scores = np.sort(scores)[-n : ]
# Normalize the scores between 0 and 1
# (the higher, the better the utility)
scores = 1 - (scores - np.min(scores))/(np.max(scores) - np.min(scores))
# Calculate the probability for each element, based on its score
pr = [np.exp(epsilon*score/(2*delta)) for score in scores]
# Normalize the probabilities so that they sum to 1
pr = pr/np.linalg.norm(pr, ord = 1)
# Debugging
# print(R[np.argmax(pr)], pr.max(), scores[np.argmax(pr)])
# print(R[np.argmin(pr)], pr.min(), scores[np.argmin(pr)])
# print(abs(pr.max() - pr.min()), abs(scores[np.argmax(pr)] - scores[np.argmin(pr)]))
# Choose an element from R based on the probabilities
if len(pr) > 0:
return R[np.random.choice(range(n), 1, p = pr)[0]], pr
else:
return np.array([]), pr
def main(): def main():
start, end = 1.0, 10.0 start, end = 1.0, 10.0
scale = 1.0 scale = 1.0

Binary file not shown.

Binary file not shown.