evaluation: Minor corrections and text
This commit is contained in:
		@ -20,7 +20,15 @@ def main(args):
 | 
				
			|||||||
  # Distribution type
 | 
					  # Distribution type
 | 
				
			||||||
  dist_type = np.array(range(0, 4))
 | 
					  dist_type = np.array(range(0, 4))
 | 
				
			||||||
  # Number of landmarks
 | 
					  # Number of landmarks
 | 
				
			||||||
  lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5)))
 | 
					  lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  markers = [
 | 
				
			||||||
 | 
					    '^', # Symmetric
 | 
				
			||||||
 | 
					    'v', # Skewed
 | 
				
			||||||
 | 
					    'D', # Bimodal
 | 
				
			||||||
 | 
					    's'  # Uniform
 | 
				
			||||||
 | 
					  ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  # Initialize plot
 | 
					  # Initialize plot
 | 
				
			||||||
  lmdk_lib.plot_init()
 | 
					  lmdk_lib.plot_init()
 | 
				
			||||||
  # Width of bars
 | 
					  # Width of bars
 | 
				
			||||||
@ -30,11 +38,13 @@ def main(args):
 | 
				
			|||||||
  x_margin = bar_width*(len(dist_type)/2 + 1)
 | 
					  x_margin = bar_width*(len(dist_type)/2 + 1)
 | 
				
			||||||
  plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
 | 
					  plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
 | 
				
			||||||
  plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
					  plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
				
			||||||
  plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
 | 
					  # plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
 | 
				
			||||||
 | 
					  plt.xlim(x_i.min(), x_i.max())
 | 
				
			||||||
  # The y axis
 | 
					  # The y axis
 | 
				
			||||||
  # plt.yscale('log')
 | 
					  # plt.yscale('log')
 | 
				
			||||||
  plt.ylabel('Euclidean distance')  # Set y axis label.
 | 
					  plt.ylim(0, 1)
 | 
				
			||||||
  # plt.ylabel('Wasserstein distance')  # Set y axis label.
 | 
					  plt.ylabel('Normalized Euclidean distance')  # Set y axis label.
 | 
				
			||||||
 | 
					  # plt.ylabel('Normalized Wasserstein distance')  # Set y axis label.
 | 
				
			||||||
  # Bar offset
 | 
					  # Bar offset
 | 
				
			||||||
  x_offset = -(bar_width/2)*(len(dist_type) - 1)
 | 
					  x_offset = -(bar_width/2)*(len(dist_type) - 1)
 | 
				
			||||||
  for d_i, d in enumerate(dist_type):
 | 
					  for d_i, d in enumerate(dist_type):
 | 
				
			||||||
@ -47,27 +57,41 @@ def main(args):
 | 
				
			|||||||
    print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
 | 
					    print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
 | 
				
			||||||
    mae = np.zeros(len(lmdk_n))
 | 
					    mae = np.zeros(len(lmdk_n))
 | 
				
			||||||
    for n_i, n in enumerate(lmdk_n):
 | 
					    for n_i, n in enumerate(lmdk_n):
 | 
				
			||||||
      for r in range(args.reps):
 | 
					      if n == lmdk_n[-1]:
 | 
				
			||||||
 | 
					        break
 | 
				
			||||||
 | 
					      for r in range(args.iter):
 | 
				
			||||||
        lmdks = lmdk_lib.get_lmdks(seq, n, d)
 | 
					        lmdks = lmdk_lib.get_lmdks(seq, n, d)
 | 
				
			||||||
        hist, h = lmdk_lib.get_hist(seq, lmdks)
 | 
					        hist, h = lmdk_lib.get_hist(seq, lmdks)
 | 
				
			||||||
        opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
 | 
					        opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
 | 
				
			||||||
        delta = 1.0
 | 
					        delta = 1.0
 | 
				
			||||||
        res, _ = exp_mech.exponential(hist, opts, exp_mech.score, delta, epsilon)
 | 
					        res, _ = exp_mech.exponential(hist, opts, exp_mech.score, delta, epsilon)
 | 
				
			||||||
        mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps  # Euclidean
 | 
					        mae[n_i] += lmdk_lib.get_norm(hist, res)/args.iter  # Euclidean
 | 
				
			||||||
        # mae[n_i] += lmdk_lib.get_emd(hist, res)/args.reps  # Wasserstein
 | 
					        # mae[n_i] += lmdk_lib.get_emd(hist, res)/args.iter  # Wasserstein
 | 
				
			||||||
 | 
					    mae = mae/21  # Euclidean
 | 
				
			||||||
 | 
					    # mae = mae/11.75  # Wasserstein
 | 
				
			||||||
    print('[OK]', flush=True)
 | 
					    print('[OK]', flush=True)
 | 
				
			||||||
    # Plot bar for current distribution
 | 
					    # # Plot bar for current distribution
 | 
				
			||||||
    plt.bar(
 | 
					    # plt.bar(
 | 
				
			||||||
      x_i + x_offset,
 | 
					    #   x_i + x_offset,
 | 
				
			||||||
 | 
					    #   mae,
 | 
				
			||||||
 | 
					    #   bar_width,
 | 
				
			||||||
 | 
					    #   label=label,
 | 
				
			||||||
 | 
					    #   linewidth=lmdk_lib.line_width
 | 
				
			||||||
 | 
					    # )
 | 
				
			||||||
 | 
					    # # Change offset for next bar
 | 
				
			||||||
 | 
					    # x_offset += bar_width
 | 
				
			||||||
 | 
					    # Plot line
 | 
				
			||||||
 | 
					    plt.plot(
 | 
				
			||||||
 | 
					      x_i,
 | 
				
			||||||
      mae,
 | 
					      mae,
 | 
				
			||||||
      bar_width,
 | 
					 | 
				
			||||||
      label=label,
 | 
					      label=label,
 | 
				
			||||||
 | 
					      marker=markers[d_i],
 | 
				
			||||||
 | 
					      markersize=lmdk_lib.marker_size,
 | 
				
			||||||
 | 
					      markeredgewidth=0,
 | 
				
			||||||
      linewidth=lmdk_lib.line_width
 | 
					      linewidth=lmdk_lib.line_width
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    # Change offset for next bar
 | 
					  path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-norm-l')
 | 
				
			||||||
    x_offset += bar_width
 | 
					  # path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-emd-l')
 | 
				
			||||||
  path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-norm')
 | 
					 | 
				
			||||||
  # path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-emd')
 | 
					 | 
				
			||||||
  # Plot legend
 | 
					  # Plot legend
 | 
				
			||||||
  lmdk_lib.plot_legend()
 | 
					  lmdk_lib.plot_legend()
 | 
				
			||||||
  # Show plot
 | 
					  # Show plot
 | 
				
			||||||
@ -81,7 +105,7 @@ def main(args):
 | 
				
			|||||||
  Parse arguments.
 | 
					  Parse arguments.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Optional:
 | 
					  Optional:
 | 
				
			||||||
    reps - The number of repetitions.
 | 
					    iter - The number of iterations.
 | 
				
			||||||
    time - The time limit of the sequence.
 | 
					    time - The time limit of the sequence.
 | 
				
			||||||
'''
 | 
					'''
 | 
				
			||||||
def parse_args():
 | 
					def parse_args():
 | 
				
			||||||
@ -91,7 +115,7 @@ def parse_args():
 | 
				
			|||||||
  # Mandatory arguments.
 | 
					  # Mandatory arguments.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  # Optional arguments.
 | 
					  # Optional arguments.
 | 
				
			||||||
  parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
 | 
					  parser.add_argument('-i', '--iter', help='The number of iterations.', type=int, default=1)
 | 
				
			||||||
  parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
 | 
					  parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  # Parse arguments.
 | 
					  # Parse arguments.
 | 
				
			||||||
 | 
				
			|||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel_cmp/lmdk_sel_cmp-emd-l.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel_cmp/lmdk_sel_cmp-emd-l.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								rslt/lmdk_sel_cmp/lmdk_sel_cmp-norm-l.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rslt/lmdk_sel_cmp/lmdk_sel_cmp-norm-l.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							@ -2,8 +2,35 @@
 | 
				
			|||||||
\label{sec:lmdk-sel-eval}
 | 
					\label{sec:lmdk-sel-eval}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
In this section we present the experiments that we performed, to test the methodology that we presented in Section~\ref{subsec:lmdk-sel-sol}, on real and synthetic data sets.
 | 
					In this section we present the experiments that we performed, to test the methodology that we presented in Section~\ref{subsec:lmdk-sel-sol}, on real and synthetic data sets.
 | 
				
			||||||
% With the experiments on the real data sets (Section~\ref{subsec:lmdk-expt-bgt}), we show the performance in terms of utility of our three {\thething} mechanisms.
 | 
					With the experiments on the synthetic data sets (Section~\ref{subsec:sel-utiliy}) we show the normaziled distances for various {\thething} percentages.
 | 
				
			||||||
% With the experiments on the synthetic data sets (Section~\ref{subsec:lmdk-expt-cor}) we show the privacy loss by our framework when tuning the size and statistical characteristics of the input {\thething} set $L$ with special emphasis on how the privacy loss under temporal correlation is affected by the number and distribution of the {\thethings}.
 | 
					privacy loss by our framework when tuning the size and statistical characteristics of the input {\thething} set $L$ with special emphasis on how the privacy loss under temporal correlation is affected by the number and distribution of the {\thethings}.
 | 
				
			||||||
 | 
					With the experiments on the real data sets (Section~\ref{subsec:sel-prv}), we show the performance in terms of utility of our three {\thething} mechanisms in combination with privacy preserving {\thething} that can be possibly applied to humans.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\subsection{{\Thething} selection utility metrics}
 | 
				
			||||||
 | 
					\label{subsec:sel-utl}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Figure~\ref{fig:sel-dist} demonstrates the normalized distance that we obtain when we utilize either (a)~the Euclidean or (b)~the Wasserstein distance metric to obtain a set of {\thethings} including regular events.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{figure}[htp]
 | 
				
			||||||
 | 
					  \centering
 | 
				
			||||||
 | 
					  \subcaptionbox{Euclidean\label{fig:sel-dist-norm}}{%
 | 
				
			||||||
 | 
					    \includegraphics[width=.5\linewidth]{evaluation/sel-dist-norm}%
 | 
				
			||||||
 | 
					  }%
 | 
				
			||||||
 | 
					  \subcaptionbox{Wasserstein\label{fig:sel-dist-emd}}{%
 | 
				
			||||||
 | 
					    \includegraphics[width=.5\linewidth]{evaluation/sel-dist-emd}%
 | 
				
			||||||
 | 
					  }%
 | 
				
			||||||
 | 
					  \caption{The normalized (a)~Euclidean, and (b)~Wasserstein distance of the generated {\thething} sets for different {\thething} percentages.}
 | 
				
			||||||
 | 
					  \label{fig:sel-dist}
 | 
				
			||||||
 | 
					\end{figure}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Comparing the results of the Euclidean distance in Figure~\ref{fig:sel-dist-norm} with those of the Wasserstein in Figure~\ref{fig:sel-dist-emd} we conclude that the Euclidean distance provides more consistent results for all possible distributions.
 | 
				
			||||||
 | 
					The maximum difference is approximately $0.4$ for the former and $0.7$ for the latter between the bimodal and skewed {\thething} distribution.
 | 
				
			||||||
 | 
					Therefore, we choose to utilize the Euclidean distance metric for the implementation of the privacy-preserving {\thething} selection.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\subsection{Budget allocation and {\thething} selection}
 | 
				
			||||||
 | 
					\label{subsec:sel-prv}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Figure~\ref{fig:real-sel} exhibits the performance of Skip, Uniform, and Adaptive (see Section~\ref{subsec:lmdk-mechs}) in combination with the {\thething} selection component.
 | 
					Figure~\ref{fig:real-sel} exhibits the performance of Skip, Uniform, and Adaptive (see Section~\ref{subsec:lmdk-mechs}) in combination with the {\thething} selection component.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -19,7 +46,7 @@ Figure~\ref{fig:real-sel} exhibits the performance of Skip, Uniform, and Adaptiv
 | 
				
			|||||||
  \subcaptionbox{T-drive\label{fig:t-drive-sel}}{%
 | 
					  \subcaptionbox{T-drive\label{fig:t-drive-sel}}{%
 | 
				
			||||||
    \includegraphics[width=.5\linewidth]{evaluation/t-drive-sel}%
 | 
					    \includegraphics[width=.5\linewidth]{evaluation/t-drive-sel}%
 | 
				
			||||||
  }%
 | 
					  }%
 | 
				
			||||||
  \caption{The mean absolute error (a)~as a percentage, (b)~in kWh, and (c)~in meters of the released data for different {\thethings} percentages.}
 | 
					  \caption{The mean absolute error (a)~as a percentage, (b)~in kWh, and (c)~in meters of the released data for different {\thething} percentages.}
 | 
				
			||||||
  \label{fig:real-sel}
 | 
					  \label{fig:real-sel}
 | 
				
			||||||
\end{figure}
 | 
					\end{figure}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user