evaluation: Minor corrections and text
This commit is contained in:
@ -20,7 +20,15 @@ def main(args):
|
||||
# Distribution type
|
||||
dist_type = np.array(range(0, 4))
|
||||
# Number of landmarks
|
||||
lmdk_n = np.array(range(int(.2*args.time), args.time, int(args.time/5)))
|
||||
lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
|
||||
|
||||
markers = [
|
||||
'^', # Symmetric
|
||||
'v', # Skewed
|
||||
'D', # Bimodal
|
||||
's' # Uniform
|
||||
]
|
||||
|
||||
# Initialize plot
|
||||
lmdk_lib.plot_init()
|
||||
# Width of bars
|
||||
@ -30,11 +38,13 @@ def main(args):
|
||||
x_margin = bar_width*(len(dist_type)/2 + 1)
|
||||
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
|
||||
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||
# plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||
plt.xlim(x_i.min(), x_i.max())
|
||||
# The y axis
|
||||
# plt.yscale('log')
|
||||
plt.ylabel('Euclidean distance') # Set y axis label.
|
||||
# plt.ylabel('Wasserstein distance') # Set y axis label.
|
||||
plt.ylim(0, 1)
|
||||
plt.ylabel('Normalized Euclidean distance') # Set y axis label.
|
||||
# plt.ylabel('Normalized Wasserstein distance') # Set y axis label.
|
||||
# Bar offset
|
||||
x_offset = -(bar_width/2)*(len(dist_type) - 1)
|
||||
for d_i, d in enumerate(dist_type):
|
||||
@ -47,27 +57,41 @@ def main(args):
|
||||
print('(%d/%d) %s... ' %(d_i + 1, len(dist_type), title), end='', flush=True)
|
||||
mae = np.zeros(len(lmdk_n))
|
||||
for n_i, n in enumerate(lmdk_n):
|
||||
for r in range(args.reps):
|
||||
if n == lmdk_n[-1]:
|
||||
break
|
||||
for r in range(args.iter):
|
||||
lmdks = lmdk_lib.get_lmdks(seq, n, d)
|
||||
hist, h = lmdk_lib.get_hist(seq, lmdks)
|
||||
opts = lmdk_sel.get_opts_from_top_h(seq, lmdks)
|
||||
delta = 1.0
|
||||
res, _ = exp_mech.exponential(hist, opts, exp_mech.score, delta, epsilon)
|
||||
mae[n_i] += lmdk_lib.get_norm(hist, res)/args.reps # Euclidean
|
||||
# mae[n_i] += lmdk_lib.get_emd(hist, res)/args.reps # Wasserstein
|
||||
mae[n_i] += lmdk_lib.get_norm(hist, res)/args.iter # Euclidean
|
||||
# mae[n_i] += lmdk_lib.get_emd(hist, res)/args.iter # Wasserstein
|
||||
mae = mae/21 # Euclidean
|
||||
# mae = mae/11.75 # Wasserstein
|
||||
print('[OK]', flush=True)
|
||||
# Plot bar for current distribution
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
# # Plot bar for current distribution
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae,
|
||||
# bar_width,
|
||||
# label=label,
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# # Change offset for next bar
|
||||
# x_offset += bar_width
|
||||
# Plot line
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae,
|
||||
bar_width,
|
||||
label=label,
|
||||
marker=markers[d_i],
|
||||
markersize=lmdk_lib.marker_size,
|
||||
markeredgewidth=0,
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
# Change offset for next bar
|
||||
x_offset += bar_width
|
||||
path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-norm')
|
||||
# path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-emd')
|
||||
path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-norm-l')
|
||||
# path = str('../../rslt/lmdk_sel_cmp/' + 'lmdk_sel_cmp-emd-l')
|
||||
# Plot legend
|
||||
lmdk_lib.plot_legend()
|
||||
# Show plot
|
||||
@ -81,7 +105,7 @@ def main(args):
|
||||
Parse arguments.
|
||||
|
||||
Optional:
|
||||
reps - The number of repetitions.
|
||||
iter - The number of iterations.
|
||||
time - The time limit of the sequence.
|
||||
'''
|
||||
def parse_args():
|
||||
@ -91,7 +115,7 @@ def parse_args():
|
||||
# Mandatory arguments.
|
||||
|
||||
# Optional arguments.
|
||||
parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
|
||||
parser.add_argument('-i', '--iter', help='The number of iterations.', type=int, default=1)
|
||||
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
|
||||
|
||||
# Parse arguments.
|
||||
|
Reference in New Issue
Block a user