problem: WIP
This commit is contained in:
parent
1b18a7f9b3
commit
5b3acdbb09
@ -1,2 +1,199 @@
|
||||
\SetKwInput{KwResult}{Output}
|
||||
|
||||
\SetKwData{diffCur}{diffCur}
|
||||
\SetKwData{diffMin}{diffMin}
|
||||
\SetKwData{evalCur}{evalCur}
|
||||
\SetKwData{evalOrig}{evalOrig}
|
||||
\SetKwData{evalSum}{evalSum}
|
||||
\SetKwData{metricCur}{metricCur}
|
||||
\SetKwData{metricOrig}{metricOrig}
|
||||
\SetKwData{opt}{opt}
|
||||
\SetKwData{opti}{opt$_i$}
|
||||
\SetKwData{optim}{optim}
|
||||
\SetKwData{optimi}{optim$_i$}
|
||||
\SetKwData{opts}{opts}
|
||||
\SetKwData{reg}{reg}
|
||||
|
||||
\SetKwFunction{calcMetric}{calcMetric}
|
||||
\SetKwFunction{evalSeq}{evalSeq}
|
||||
\SetKwFunction{getCombs}{getCombs}
|
||||
\SetKwFunction{getOpts}{getOpts}
|
||||
|
||||
\section{Selection of events}
|
||||
\label{sec:theotherthing}
|
||||
|
||||
Given a set of {\thethings} at respective timestamps $\{l_k\}$ in a series of events at $\{t_n\}$, such that $\{l_k\} \subseteq \{t_n\}$, a data publisher might release this information by:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Selecting a set of options (Section~\ref{subsec:lmdk-set-opts}) consisting of different possible versions of $\{l_k\}$.
|
||||
|
||||
\mk{`option' or `candidate'?}
|
||||
|
||||
This could be:
|
||||
|
||||
\begin{itemize}
|
||||
\item either a random set of $k$ other timestamps similar to the actual {\thething} timestamps (Section~\ref{subsec:lmdk-rnd}),
|
||||
\item or a set including $\{l_k\}$ and $x \in [1, n - k]$ additional dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}).
|
||||
\end{itemize}
|
||||
|
||||
\item Releasing a privacy-preserving version of the {\thething} timestamps (Section~\ref{subsec:priv-opt-sel}).
|
||||
We utilize the exponential mechanism with a utility function that calculates an indicator for each of the options in the set that we selected in the previous step.
|
||||
The utility depends on the positioning of the {\thething} timestamps of an option in the series, e.g.,~the distance from the previous/next {\thething}, the distance from the start/end of the series, etc.
|
||||
\end{enumerate}
|
||||
|
||||
Following this process allows the release, and thereafter processing, of {\thething} timestamps.
|
||||
Thus, we provide an extra layer of privacy protection when we separate {\thethings} from regular events.
|
||||
|
||||
|
||||
\subsubsection{{\Thething} set options}
|
||||
\label{subsec:lmdk-set-opts}
|
||||
|
||||
This step aims to select a set of candidate {\thething} timestamps options either by randomizing the actual timestamps (Section~\ref{subsec:lmdk-rnd}), or by inserting dummy timestamps (Section~\ref{subsec:lmdk-dum-gen}) to the actual {\thething} timestamps.
|
||||
|
||||
|
||||
\paragraph{{\Thething} randomization}
|
||||
\label{subsec:lmdk-rnd}
|
||||
|
||||
A simple way to select a set of timestamps without disclosing the actual {\thethings} is by \emph{randomly} selecting an equally sized set of timestamps.
|
||||
The randomization of the process, as we will discuss in more detail in Section~\ref{subsec:priv-opt-sel}, will depend on the positioning of the {\thethings} in the series of events.
|
||||
In more detail, given a set of {\thething} timestamps $\{l_k\} \subseteq \{t_n\}$, where $\{t_n\}$ is an event sequence, we need to select all possible sets of size $k$ from $\{t_n\}$.
|
||||
|
||||
However, the introduction of randomization could impact arbitrarily the effectiveness of non-uniform privacy-protection methods.
|
||||
This applies mainly in cases where we try to achieve optimal privacy-protection of {\thething} events while maximizing the utility of the data that corresponds to the rest of the series of events.
|
||||
As a consequence, it is possible to end up providing lower levels of protection to {\thething} data than the one necessary, i.e.,~worse than the users' privacy-protection expectations.
|
||||
The methodology that we present next (Section~\ref{subsec:lmdk-dum-gen}) attempts to tackle the aforementioned shortcoming.
|
||||
|
||||
|
||||
\paragraph{Dummy {\thething} generation}
|
||||
\label{subsec:lmdk-dum-gen}
|
||||
|
||||
Selecting extra events, on top of the actual {\thethings}, as dummy {\thethings} can render actual ones indistinguishable.
|
||||
The goal is to select a list of sets with additional timestamps from a series of events at timestamps $\{t_n\}$ for a set of {\thethings} at $\{l_k\} \subseteq \{t_n\}$.
|
||||
Algorithms~\ref{algo:lmdk-sel-opt} and \ref{algo:lmdk-sel-heur} approach this problem with an optimal and heuristic methodology, respectively.
|
||||
|
||||
Function \calcMetric measures an indicator for the union of $\{l_k\}$ and a timestamp combination from $\{t_n\} \setminus \{l_k\}$.
|
||||
Function \evalSeq evaluates the result of \calcMetric by, e.g.,~estimating the standard deviation of all the distances from the previous/next {\thething}.
|
||||
Function \getOpts returns all possible \emph{valid} sets of combinations \opt such that $\{l_{k+i}\} \subset \{l_{k+j}\}, \forall i, j \in [k, n] \mid i < j$, i.e.,~larger options must contain all of the timestamps that are present in smaller ones.
|
||||
Each combination contains a set of timestamps with sizes $k + 1, k + 2, \dots, n$, where each one of them is a combination of $\{l_k\}$ with $x \in [1, n - k]$ timestamps from $\{t_n\}$.
|
||||
|
||||
\begin{algorithm}
|
||||
\caption{Optimal dummy {\thething} set options selection}
|
||||
\label{algo:lmdk-sel-opt}
|
||||
|
||||
\DontPrintSemicolon
|
||||
|
||||
\KwData{$\{t_n\}, \{l_k\}$}
|
||||
|
||||
\SetKwInput{KwData}{Input}
|
||||
|
||||
\KwResult{\optim}
|
||||
\BlankLine
|
||||
|
||||
% Evaluate the original
|
||||
\metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\;
|
||||
\evalOrig $\leftarrow$ \evalSeq{\metricOrig}\;
|
||||
|
||||
% Get all possible option combinations
|
||||
\opts $\leftarrow$ \getOpts{$\{t_n\}, \{l_k\}$}\;
|
||||
|
||||
% Track the minimum (best) evaluation
|
||||
\diffMin $\leftarrow$ $\infty$\;
|
||||
|
||||
% Track the optimal sequence (the one with the best evaluation)
|
||||
\optim $\leftarrow$ $[]$\;
|
||||
|
||||
\ForEach{\opt $\in$ \opts}{\label{algo:lmdk-sel-opt-for-each}
|
||||
\evalSum $\leftarrow 0$\;
|
||||
\ForEach{\opti $\in$ \opt}{
|
||||
\metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \opti, \{l_k\}$}\;\label{algo:lmdk-sel-opt-comparison}
|
||||
\evalSum $\leftarrow$ \evalSum $+$ \evalSeq{\metricCur}\;
|
||||
|
||||
% Compare with current optimal
|
||||
\diffCur $\leftarrow \left|\evalSum/\#\opt - \evalOrig\right|$\;
|
||||
\If{\diffCur $<$ \diffMin}{
|
||||
\diffMin $\leftarrow$ \diffCur\;
|
||||
\optim $\leftarrow$ \opt\;
|
||||
}
|
||||
}
|
||||
}\label{algo:lmdk-sel-opt-end}
|
||||
\Return{\optim}
|
||||
\end{algorithm}
|
||||
|
||||
Algorithm~\ref{algo:lmdk-sel-opt}, in particular, between Lines~{\ref{algo:lmdk-sel-opt-for-each}-\ref{algo:lmdk-sel-opt-end}} evaluates each option in \opts.
|
||||
It finds the option that is the most \emph{similar} to the original (Lines~{\ref{algo:lmdk-sel-opt-comparison}-\ref{algo:lmdk-sel-opt-end}}), i.e.,~the option that has an evaluation that differs the least from that of the sequence $\{t_n\}$ with {\thethings} $\{l_k\}$.
|
||||
|
||||
\begin{algorithm}
|
||||
\caption{Heuristic dummy {\thething} set options selection}
|
||||
\label{algo:lmdk-sel-heur}
|
||||
|
||||
\DontPrintSemicolon
|
||||
|
||||
\KwData{$\{t_n\}, \{l_k\}$}
|
||||
\KwResult{\optim}
|
||||
\BlankLine
|
||||
|
||||
% Evaluate the original
|
||||
\metricOrig $\leftarrow$ \calcMetric{$\{t_n\}, \emptyset, \{l_k\}$}\;
|
||||
\evalOrig $\leftarrow$ \evalSeq{\metricOrig}\;
|
||||
|
||||
% Get all possible option combinations
|
||||
\optim $\leftarrow$ $[]$\;
|
||||
|
||||
$\{l_{k'}\} \leftarrow \{l_k\}$\;
|
||||
|
||||
\While{$\{l_{k'}\} \neq \{t_n\}$}{\label{algo:lmdk-sel-heur-while}
|
||||
% Track the minimum (best) evaluation
|
||||
\diffMin $\leftarrow$ $\infty$\;
|
||||
|
||||
\optimi $\leftarrow$ $0$\;
|
||||
% Find the combinations for one more point
|
||||
\ForEach{\reg $\in \{t_n\} \setminus \{l_{k'}\}$}{
|
||||
|
||||
% Evaluate current
|
||||
\metricCur $\leftarrow$ \calcMetric{$\{t_n\}, \reg, \{l_{k'}\}$}\;\label{algo:lmdk-sel-heur-comparison}
|
||||
\evalCur $\leftarrow$ \evalSeq{\metricCur}\;
|
||||
|
||||
% Compare evaluations
|
||||
\diffCur $\leftarrow$ $\left|\evalCur - \evalOrig\right|$\;
|
||||
|
||||
\If{\diffCur $<$ \diffMin}{
|
||||
\diffMin $\leftarrow$ \diffCur\;
|
||||
\optimi $\leftarrow$ \reg\;
|
||||
}\label{algo:lmdk-sel-heur-comparison-end}
|
||||
}
|
||||
|
||||
% Save new point to landmarks
|
||||
$k' \leftarrow k' + 1$\;
|
||||
$l_{k'} \leftarrow \optimi$\;
|
||||
|
||||
% Add new option
|
||||
\optim.add($\{l_{k'}\} \setminus \{l_k\}$)\;
|
||||
}\label{algo:lmdk-sel-heur-end}
|
||||
|
||||
\Return{\optim}
|
||||
\end{algorithm}
|
||||
|
||||
Algorithm~\ref{algo:lmdk-sel-heur}, follows an incremental methodology.
|
||||
At each step it selects a new timestamp that corresponds to a regular ({non-\thething}) event from $\{t_n\} \setminus \{l_k\}$.
|
||||
Similar to Algorithm~\ref{algo:lmdk-sel-opt}, the selection is done based on a predefined metric (Lines~{\ref{algo:lmdk-sel-heur-comparison}-\ref{algo:lmdk-sel-heur-comparison-end}}).
|
||||
This process (Lines~{\ref{algo:lmdk-sel-heur-while}-\ref{algo:lmdk-sel-heur-end}}) goes on until we select a set that is equal to the size of the series of events, i.e.,~$\{l_{k'}\} = \{t_n\}$.
|
||||
|
||||
Note that the reverse heuristic approach, i.e.,~starting with $\{t_n\}$ {\thethings} and removing until $\{l_k\}$, performs worse than and occasionally the same with Algorithm~\ref{algo:lmdk-sel-heur}.
|
||||
|
||||
|
||||
\subsubsection{Privacy-preserving option selection}
|
||||
\label{subsec:priv-opt-sel}
|
||||
|
||||
% Nearby events
|
||||
Events that occur at recent timestamps are more likely to reveal sensitive information regarding the users involved~\cite{kellaris2014differentially}.
|
||||
Thus, taking into account more recent events with respect to {\thethings} can result in less privacy loss and better privacy protection overall.
|
||||
This leads to worse data utility.
|
||||
|
||||
% Depending on the {\thething} discovery technique
|
||||
The values of events near a {\thething} are usually similar to that of the latter.
|
||||
Therefore, privacy-preserving mechanisms are likely to approximate their values based on the nearest {\thething} instead of investing extra privacy budget to perturb their actual values; thus, spending less privacy budget.
|
||||
Saving privacy budget for releasing perturbed versions of actual event values can bring about better data utility.
|
||||
|
||||
% Distant events
|
||||
However, indicating the existence of randomized/dummy {\thethings} nearby actual {\thethings} can increase the adversarial confidence regarding the location of the latter within a series of events.
|
||||
Hence, choosing randomized/dummy {\thethings} far from the actual {\thethings} (and thus less relevant) can limit the final privacy loss.
|
||||
|
Loading…
Reference in New Issue
Block a user