code: Added functions for HUE

This commit is contained in:
Manos Katsomallos 2021-09-29 19:56:59 +02:00
parent dd3cff7b30
commit 2aeb1149e5

View File

@ -398,6 +398,61 @@ def adaptive_cont(seq, lmdks, epsilon, inc_rt, dec_rt):
return rls_data, bgts, skipped
def adaptive_cons(seq, lmdks, epsilon, inc_rt, dec_rt):
'''
Adaptive budget allocation.
Parameters:
seq - The point sequence.
lmdks - The landmarks.
epsilon - The available privacy budget.
inc_rt - Sampling rate increase rate.
dec_rt - Sampling rate decrease rate.
Returns:
rls_data - The perturbed data.
bgts - The privacy budget allocation.
skipped - The number of skipped releases.
'''
# Uniform budget allocation
bgts = uniform(seq, lmdks, epsilon)
# Released
rls_data = [None]*len(seq)
# The sampling rate
samp_rt = 1
# Track landmarks
lmdk_cur = 0
# Track skipped releases
skipped = 0
for i, p in enumerate(seq):
# Check if current point is a landmark
is_landmark = any((lmdks[:]==p).all(1))
if is_landmark:
lmdk_cur += 1
if lmdk_lib.should_sample(samp_rt) or i == 0:
# Add noise to original data
o = lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])
rls_data[i] = [p[0], o]
# Adjust sampling rate
if i > 0:
if abs(rls_data[i - 1][1] - o) < 1/bgts[i]:
# Decrease
samp_rt -= samp_rt*dec_rt
else:
# Increase
samp_rt += (1 - samp_rt)*inc_rt
else:
skipped += 1
# Skip current release and approximate with previous
rls_data[i] = rls_data[i - 1]
if is_landmark:
# Allocate the current budget to the following releases uniformly
for j in range(i + 1, len(seq)):
bgts[j] += bgts[i]/(len(lmdks) - lmdk_cur + 1)
# No budget was spent
bgts[i] = 0
return rls_data, bgts, skipped
def skip(seq, lmdks, epsilon):
'''
Skip landmarks.
@ -459,6 +514,36 @@ def skip_cont(seq, lmdks, epsilon):
return rls_data, bgts
def skip_cons(seq, lmdks, epsilon):
'''
Skip landmarks.
Parameters:
seq - The point sequence.
lmdks - The landmarks.
epsilon - The available privacy budget.
Returns:
rls_data - The perturbed data.
bgts - The privacy budget allocation.
'''
# Event-level budget allocation
bgts = np.array(len(seq)*[epsilon])
# Released
rls_data = [None]*len(seq)
for i, p in enumerate(seq):
# Check if current point is a landmark
is_landmark = any((lmdks[:]==p).all(1))
# Add noise
o = [p[0], lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])]
if is_landmark:
if i > 0:
# Approximate with previous
o = rls_data[i - 1]
bgts[i] = 0
rls_data[i] = o
return rls_data, bgts
def sample(seq, lmdks, epsilon):
'''
Publish randomly.
@ -642,6 +727,18 @@ def uniform_cont(seq, lmdks, epsilon):
return rls_data, bgts
def uniform_cons(seq, lmdks, epsilon):
# Released
rls_data = [None]*len(seq)
# Budgets
bgts = uniform(seq, lmdks, epsilon)
for i, p in enumerate(seq):
is_landmark = any((lmdks[:]==p).all(1))
# [timestamp, perturbed consumption]
rls_data[i] = [p[0], lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])]
return rls_data, bgts
def utility_analysis(seq, lmdks, o, epsilon):
'''
Analyze the utility.
@ -688,3 +785,10 @@ def mae_cont(o):
if p[0] != p[1]:
mae += 1/len(o)
return mae
def mae_cons(seq, o):
mae = 0
for i, p in enumerate(seq):
mae += abs(p[1] - o[i][1])/len(seq)
return mae