code: Added functions for HUE
This commit is contained in:
		@ -398,6 +398,61 @@ def adaptive_cont(seq, lmdks, epsilon, inc_rt, dec_rt):
 | 
			
		||||
  return rls_data, bgts, skipped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def adaptive_cons(seq, lmdks, epsilon, inc_rt, dec_rt):
 | 
			
		||||
  '''
 | 
			
		||||
    Adaptive budget allocation.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      seq - The point sequence.
 | 
			
		||||
      lmdks - The landmarks.
 | 
			
		||||
      epsilon - The available privacy budget.
 | 
			
		||||
      inc_rt - Sampling rate increase rate.
 | 
			
		||||
      dec_rt - Sampling rate decrease rate.
 | 
			
		||||
    Returns:
 | 
			
		||||
      rls_data - The perturbed data.
 | 
			
		||||
      bgts - The privacy budget allocation.
 | 
			
		||||
      skipped - The number of skipped releases.
 | 
			
		||||
  '''
 | 
			
		||||
  # Uniform budget allocation
 | 
			
		||||
  bgts = uniform(seq, lmdks, epsilon)
 | 
			
		||||
  # Released
 | 
			
		||||
  rls_data = [None]*len(seq)
 | 
			
		||||
  # The sampling rate
 | 
			
		||||
  samp_rt = 1
 | 
			
		||||
  # Track landmarks
 | 
			
		||||
  lmdk_cur = 0
 | 
			
		||||
  # Track skipped releases
 | 
			
		||||
  skipped = 0
 | 
			
		||||
  for i, p in enumerate(seq):
 | 
			
		||||
    # Check if current point is a landmark
 | 
			
		||||
    is_landmark = any((lmdks[:]==p).all(1))
 | 
			
		||||
    if is_landmark:
 | 
			
		||||
      lmdk_cur += 1
 | 
			
		||||
    if lmdk_lib.should_sample(samp_rt) or i == 0:
 | 
			
		||||
      # Add noise to original data
 | 
			
		||||
      o = lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])
 | 
			
		||||
      rls_data[i] = [p[0], o]
 | 
			
		||||
      # Adjust sampling rate
 | 
			
		||||
      if i > 0:
 | 
			
		||||
        if abs(rls_data[i - 1][1] - o) < 1/bgts[i]:
 | 
			
		||||
          # Decrease
 | 
			
		||||
          samp_rt -= samp_rt*dec_rt
 | 
			
		||||
        else:
 | 
			
		||||
          # Increase
 | 
			
		||||
          samp_rt += (1 - samp_rt)*inc_rt
 | 
			
		||||
    else:
 | 
			
		||||
      skipped += 1
 | 
			
		||||
      # Skip current release and approximate with previous
 | 
			
		||||
      rls_data[i] = rls_data[i - 1]
 | 
			
		||||
      if is_landmark:
 | 
			
		||||
        # Allocate the current budget to the following releases uniformly
 | 
			
		||||
        for j in range(i + 1, len(seq)):
 | 
			
		||||
          bgts[j] += bgts[i]/(len(lmdks) - lmdk_cur + 1)
 | 
			
		||||
      # No budget was spent
 | 
			
		||||
      bgts[i] = 0
 | 
			
		||||
  return rls_data, bgts, skipped
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def skip(seq, lmdks, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    Skip landmarks.
 | 
			
		||||
@ -459,6 +514,36 @@ def skip_cont(seq, lmdks, epsilon):
 | 
			
		||||
  return rls_data, bgts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def skip_cons(seq, lmdks, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    Skip landmarks.
 | 
			
		||||
 | 
			
		||||
    Parameters:
 | 
			
		||||
      seq - The point sequence.
 | 
			
		||||
      lmdks - The landmarks.
 | 
			
		||||
      epsilon - The available privacy budget.
 | 
			
		||||
    Returns:
 | 
			
		||||
      rls_data - The perturbed data.
 | 
			
		||||
      bgts - The privacy budget allocation.
 | 
			
		||||
  '''
 | 
			
		||||
  # Event-level budget allocation
 | 
			
		||||
  bgts = np.array(len(seq)*[epsilon])
 | 
			
		||||
  # Released
 | 
			
		||||
  rls_data = [None]*len(seq)
 | 
			
		||||
  for i, p in enumerate(seq):
 | 
			
		||||
    # Check if current point is a landmark
 | 
			
		||||
    is_landmark = any((lmdks[:]==p).all(1))
 | 
			
		||||
    # Add noise
 | 
			
		||||
    o = [p[0], lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])]
 | 
			
		||||
    if is_landmark:
 | 
			
		||||
      if i > 0:
 | 
			
		||||
        # Approximate with previous
 | 
			
		||||
        o = rls_data[i - 1]
 | 
			
		||||
      bgts[i] = 0
 | 
			
		||||
    rls_data[i] = o
 | 
			
		||||
  return rls_data, bgts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def sample(seq, lmdks, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    Publish randomly.
 | 
			
		||||
@ -642,6 +727,18 @@ def uniform_cont(seq, lmdks, epsilon):
 | 
			
		||||
  return rls_data, bgts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def uniform_cons(seq, lmdks, epsilon):
 | 
			
		||||
  # Released
 | 
			
		||||
  rls_data = [None]*len(seq)
 | 
			
		||||
  # Budgets
 | 
			
		||||
  bgts = uniform(seq, lmdks, epsilon)
 | 
			
		||||
  for i, p in enumerate(seq):
 | 
			
		||||
    is_landmark = any((lmdks[:]==p).all(1))
 | 
			
		||||
    # [timestamp, perturbed consumption]
 | 
			
		||||
    rls_data[i] = [p[0], lmdk_lib.add_laplace_noise(p[1], 1, bgts[i])]
 | 
			
		||||
  return rls_data, bgts
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def utility_analysis(seq, lmdks, o, epsilon):
 | 
			
		||||
  '''
 | 
			
		||||
    Analyze the utility.
 | 
			
		||||
@ -688,3 +785,10 @@ def mae_cont(o):
 | 
			
		||||
    if p[0] != p[1]:
 | 
			
		||||
      mae += 1/len(o)
 | 
			
		||||
  return mae
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mae_cons(seq, o):
 | 
			
		||||
  mae = 0
 | 
			
		||||
  for i, p in enumerate(seq):
 | 
			
		||||
    mae += abs(p[1] - o[i][1])/len(seq)
 | 
			
		||||
  return mae
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user