expt: Renamed HUE experiment script
This commit is contained in:
		
							
								
								
									
										169
									
								
								code/expt/hue.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										169
									
								
								code/expt/hue.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,169 @@
 | 
			
		||||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(1, '../lib')
 | 
			
		||||
import argparse
 | 
			
		||||
import ast
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
from geopy.distance import distance
 | 
			
		||||
import lmdk_bgt
 | 
			
		||||
import lmdk_lib
 | 
			
		||||
import math
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  res_file = '/home/manos/Cloud/Data/HUE/Results.zip'
 | 
			
		||||
  # User's consumption
 | 
			
		||||
  seq = lmdk_lib.load_data(args, 'cons')
 | 
			
		||||
  # The name of the dataset
 | 
			
		||||
  d = 'HUE'
 | 
			
		||||
  # The landmarks percentages
 | 
			
		||||
  lmdks_pct = [0, 20, 40, 60, 80, 100]
 | 
			
		||||
  # Landmarks' thresholds
 | 
			
		||||
  lmdks_th = [0, .54, .68, .88, 1.12, 10]
 | 
			
		||||
  # The privacy budget
 | 
			
		||||
  epsilon = 10.0
 | 
			
		||||
 | 
			
		||||
  # Number of methods
 | 
			
		||||
  n = 3
 | 
			
		||||
  # Width of bars
 | 
			
		||||
  bar_width = 1/(n + 1)
 | 
			
		||||
  # The x axis
 | 
			
		||||
  x_i = np.arange(len(lmdks_pct))
 | 
			
		||||
  x_margin = bar_width*(n/2 + 1)
 | 
			
		||||
 | 
			
		||||
  print('\n##############################', d, '\n')
 | 
			
		||||
 | 
			
		||||
  # Initialize plot
 | 
			
		||||
  lmdk_lib.plot_init()
 | 
			
		||||
  # The x axis
 | 
			
		||||
  plt.xticks(x_i, np.array(lmdks_pct, int))
 | 
			
		||||
  plt.xlabel('Landmarks (%)')  # Set x axis label.
 | 
			
		||||
  plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
 | 
			
		||||
  # The y axis
 | 
			
		||||
  plt.ylabel('Mean absolute error (kWh)')  # Set y axis label.
 | 
			
		||||
  plt.yscale('log')
 | 
			
		||||
  # plt.ylim(.01, 10000)
 | 
			
		||||
  # Bar offset
 | 
			
		||||
  x_offset = -(bar_width/2)*(n - 1)
 | 
			
		||||
 | 
			
		||||
  mae_u = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_s = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_a = np.zeros(len(lmdks_pct))
 | 
			
		||||
  mae_evt = 0
 | 
			
		||||
  mae_usr = 0
 | 
			
		||||
 | 
			
		||||
  for i, pct in enumerate(lmdks_pct):
 | 
			
		||||
    # Find landmarks
 | 
			
		||||
    lmdks = seq[seq[:, 1] < lmdks_th[i]]
 | 
			
		||||
 | 
			
		||||
    for _ in range(args.iter):
 | 
			
		||||
      # Skip
 | 
			
		||||
      rls_data_s, bgts_s = lmdk_bgt.skip_cons(seq, lmdks, epsilon)
 | 
			
		||||
      # lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
 | 
			
		||||
      mae_s[i] += lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Uniform
 | 
			
		||||
      rls_data_u, bgts_u = lmdk_bgt.uniform_cons(seq, lmdks, epsilon)
 | 
			
		||||
      mae_u[i] += lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Adaptive
 | 
			
		||||
      rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, epsilon, .5, .5)
 | 
			
		||||
      mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
 | 
			
		||||
 | 
			
		||||
      # Calculate once
 | 
			
		||||
      # Event
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
 | 
			
		||||
        mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
 | 
			
		||||
      # User
 | 
			
		||||
      if i == 0:
 | 
			
		||||
        rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
 | 
			
		||||
        mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_evt,
 | 
			
		||||
    color = '#212121',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
 | 
			
		||||
 | 
			
		||||
  plt.axhline(
 | 
			
		||||
    y = mae_usr,
 | 
			
		||||
    color = '#616161',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
 | 
			
		||||
 | 
			
		||||
  plt.bar(
 | 
			
		||||
    x_i + x_offset,
 | 
			
		||||
    mae_s,
 | 
			
		||||
    bar_width,
 | 
			
		||||
    label='Skip',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  x_offset += bar_width
 | 
			
		||||
  plt.bar(
 | 
			
		||||
    x_i + x_offset,
 | 
			
		||||
    mae_u,
 | 
			
		||||
    bar_width,
 | 
			
		||||
    label='Uniform',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  x_offset += bar_width
 | 
			
		||||
  plt.bar(
 | 
			
		||||
    x_i + x_offset,
 | 
			
		||||
    mae_a,
 | 
			
		||||
    bar_width,
 | 
			
		||||
    label='Adaptive',
 | 
			
		||||
    linewidth=lmdk_lib.line_width
 | 
			
		||||
  )
 | 
			
		||||
  x_offset += bar_width
 | 
			
		||||
 | 
			
		||||
  path = str('../../rslt/bgt_cmp/' + d)
 | 
			
		||||
  # Plot legend
 | 
			
		||||
  lmdk_lib.plot_legend()
 | 
			
		||||
  # Show plot
 | 
			
		||||
  # plt.show()
 | 
			
		||||
  # Save plot
 | 
			
		||||
  lmdk_lib.save_plot(path + '.pdf')
 | 
			
		||||
  print('[OK]', flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
  '''
 | 
			
		||||
    Parse arguments.
 | 
			
		||||
 | 
			
		||||
    Optional:
 | 
			
		||||
      res  - The results archive file.
 | 
			
		||||
      iter - The total iterations.
 | 
			
		||||
  '''
 | 
			
		||||
  # Create argument parser.
 | 
			
		||||
  parser = argparse.ArgumentParser()
 | 
			
		||||
 | 
			
		||||
  # Mandatory arguments.
 | 
			
		||||
 | 
			
		||||
  # Optional arguments.
 | 
			
		||||
  parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
 | 
			
		||||
  parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
 | 
			
		||||
 | 
			
		||||
  # Parse arguments.
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
  try:
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    main(parse_args())
 | 
			
		||||
    end_time = time.time()
 | 
			
		||||
    print('##############################')
 | 
			
		||||
    print('Time   : %.4fs' % (end_time - start_time))
 | 
			
		||||
    print('##############################')
 | 
			
		||||
  except KeyboardInterrupt:
 | 
			
		||||
    print('Interrupted by user.')
 | 
			
		||||
    exit()
 | 
			
		||||
		Reference in New Issue
	
	Block a user