code: Ready for copenhagen
This commit is contained in:
parent
f5a6b317ac
commit
0fa215558a
@ -3,10 +3,12 @@
|
||||
import sys
|
||||
sys.path.insert(1, '../lib')
|
||||
import argparse
|
||||
import ast
|
||||
from datetime import datetime
|
||||
from geopy.distance import distance
|
||||
import lmdk_bgt
|
||||
import lmdk_lib
|
||||
import math
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import time
|
||||
@ -28,7 +30,7 @@ def main(args):
|
||||
epsilon = 1.0
|
||||
|
||||
# Number of methods
|
||||
n = 6
|
||||
n = 3
|
||||
# Width of bars
|
||||
bar_width = 1/(n + 1)
|
||||
# The x axis
|
||||
@ -46,111 +48,89 @@ def main(args):
|
||||
plt.xlabel('Landmarks percentage') # Set x axis label.
|
||||
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||
# The y axis
|
||||
plt.ylabel('Mean absolute error (m)') # Set y axis label.
|
||||
plt.yscale('log')
|
||||
plt.ylim(1, 100000000)
|
||||
plt.ylabel('Mean absolute error') # Set y axis label.
|
||||
# plt.yscale('log')
|
||||
plt.ylim(0, 1.4)
|
||||
# Bar offset
|
||||
x_offset = -(bar_width/2)*(n - 1)
|
||||
|
||||
mae_u = np.zeros(len(lmdks_pct))
|
||||
mae_s = np.zeros(len(lmdks_pct))
|
||||
mae_a = np.zeros(len(lmdks_pct))
|
||||
mae_r = np.zeros(len(lmdks_pct))
|
||||
mae_d = np.zeros(len(lmdks_pct))
|
||||
mae_i = np.zeros(len(lmdks_pct))
|
||||
mae_evt = np.zeros(len(lmdks_pct))
|
||||
mae_usr = np.zeros(len(lmdks_pct))
|
||||
for i, pct in enumerate(lmdks_pct):
|
||||
# Find landmarks
|
||||
# lmdks = lmdk_lib.find_lmdks_tim(lmdk_data, seq, uid, pct)
|
||||
lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
|
||||
|
||||
print(pct, np.shape(lmdks)[0]/np.shape(seq)[0])
|
||||
for _ in range(args.iter):
|
||||
# Skip
|
||||
rls_data_s, _ = lmdk_bgt.skip_cont(seq, lmdks, epsilon)
|
||||
mae_s[i] += lmdk_bgt.mae_cont(rls_data_s)/args.iter
|
||||
|
||||
# for _ in range(args.iter):
|
||||
# # Skip
|
||||
# rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, epsilon)
|
||||
# mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
|
||||
# Uniform
|
||||
rls_data_u, _ = lmdk_bgt.uniform_cont(seq, lmdks, epsilon)
|
||||
mae_u[i] += lmdk_bgt.mae_cont(rls_data_u)/args.iter
|
||||
|
||||
# # Uniform
|
||||
# rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, epsilon)
|
||||
# mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
|
||||
# Adaptive
|
||||
rls_data_a, _, _ = lmdk_bgt.adaptive_cont(seq, lmdks, epsilon, .5, .5)
|
||||
mae_a[i] += lmdk_bgt.mae_cont(rls_data_a)/args.iter
|
||||
|
||||
# # Adaptive
|
||||
# rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, epsilon, .5, .5)
|
||||
# mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
|
||||
# Event
|
||||
rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 0), epsilon)
|
||||
mae_evt[i] += lmdk_bgt.mae_cont(rls_data_evt)/args.iter
|
||||
# User
|
||||
rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 100), epsilon)
|
||||
mae_usr[i] += lmdk_bgt.mae_cont(rls_data_usr)/args.iter
|
||||
|
||||
# # Sample
|
||||
# rls_data_r, _, _ = lmdk_bgt.sample(seq, lmdks, epsilon)
|
||||
# mae_r[i] += lmdk_bgt.mae(seq, rls_data_r)/args.iter
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae_evt,
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
|
||||
# # Discount
|
||||
# rls_data_d, _, _ = lmdk_bgt.discount(seq, lmdks, epsilon)
|
||||
# mae_d[i] += lmdk_bgt.mae(seq, rls_data_d)/args.iter
|
||||
plt.plot(
|
||||
x_i,
|
||||
mae_usr,
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
|
||||
# # Incremental
|
||||
# rls_data_i, _, _ = lmdk_bgt.incremental(seq, lmdks, epsilon, .5)
|
||||
# mae_i[i] += lmdk_bgt.mae(seq, rls_data_i)/args.iter
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_s,
|
||||
bar_width,
|
||||
label='Skip',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_u,
|
||||
bar_width,
|
||||
label='Uniform',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
plt.bar(
|
||||
x_i + x_offset,
|
||||
mae_a,
|
||||
bar_width,
|
||||
label='Adaptive',
|
||||
linewidth=lmdk_lib.line_width
|
||||
)
|
||||
x_offset += bar_width
|
||||
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_s,
|
||||
# bar_width,
|
||||
# label='Skip',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
# # Plot bars
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_u,
|
||||
# bar_width,
|
||||
# label='Uniform',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_a,
|
||||
# bar_width,
|
||||
# label='Adaptive',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_r,
|
||||
# bar_width,
|
||||
# label='Sample',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_d,
|
||||
# bar_width,
|
||||
# label='Discount',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
# plt.bar(
|
||||
# x_i + x_offset,
|
||||
# mae_i,
|
||||
# bar_width,
|
||||
# label='Incremental',
|
||||
# linewidth=lmdk_lib.line_width
|
||||
# )
|
||||
# x_offset += bar_width
|
||||
|
||||
# path = str('rslt/bgt_cmp/' + d)
|
||||
# # Plot legend
|
||||
# lmdk_lib.plot_legend()
|
||||
path = str('rslt/bgt_cmp/' + d)
|
||||
# Plot legend
|
||||
lmdk_lib.plot_legend()
|
||||
# # Show plot
|
||||
# # plt.show()
|
||||
# plt.show()
|
||||
# # Save plot
|
||||
# lmdk_lib.save_plot(path + '.pdf')
|
||||
print('[OK]', flush=True)
|
||||
|
||||
|
||||
|
||||
|
||||
def parse_args():
|
||||
'''
|
||||
Parse arguments.
|
||||
|
@ -343,6 +343,61 @@ def adaptive(seq, lmdks, epsilon, inc_rt, dec_rt):
|
||||
return rls_data, bgts, skipped
|
||||
|
||||
|
||||
def adaptive_cont(seq, lmdks, epsilon, inc_rt, dec_rt):
|
||||
'''
|
||||
Adaptive budget allocation.
|
||||
|
||||
Parameters:
|
||||
seq - The point sequence.
|
||||
lmdks - The landmarks.
|
||||
epsilon - The available privacy budget.
|
||||
inc_rt - Sampling rate increase rate.
|
||||
dec_rt - Sampling rate decrease rate.
|
||||
Returns:
|
||||
rls_data - The perturbed data.
|
||||
bgts - The privacy budget allocation.
|
||||
skipped - The number of skipped releases.
|
||||
'''
|
||||
# Uniform budget allocation
|
||||
bgts = uniform(seq, lmdks, epsilon)
|
||||
# Released
|
||||
rls_data = [None]*len(seq)
|
||||
# The sampling rate
|
||||
samp_rt = 1
|
||||
# Track landmarks
|
||||
lmdk_cur = 0
|
||||
# Track skipped releases
|
||||
skipped = 0
|
||||
for i, p in enumerate(seq):
|
||||
# Check if current point is a landmark
|
||||
r = p[2] in lmdks
|
||||
if r:
|
||||
lmdk_cur += 1
|
||||
if lmdk_lib.should_sample(samp_rt) or i == 0:
|
||||
# Add noise to original data
|
||||
o = lmdk_lib.randomized_response(r, bgts[i])
|
||||
rls_data[i] = [r, o]
|
||||
# Adjust sampling rate
|
||||
if i > 0:
|
||||
if rls_data[i - 1][1] == o:
|
||||
# Decrease
|
||||
samp_rt -= samp_rt*dec_rt
|
||||
else:
|
||||
# Increase
|
||||
samp_rt += (1 - samp_rt)*inc_rt
|
||||
else:
|
||||
skipped += 1
|
||||
# Skip current release and approximate with previous
|
||||
rls_data[i] = rls_data[i - 1]
|
||||
if r:
|
||||
# Allocate the current budget to the following releases uniformly
|
||||
for j in range(i + 1, len(seq)):
|
||||
bgts[j] += bgts[i]/(len(lmdks) - lmdk_cur + 1)
|
||||
# No budget was spent
|
||||
bgts[i] = 0
|
||||
return rls_data, bgts, skipped
|
||||
|
||||
|
||||
def skip(seq, lmdks, epsilon):
|
||||
'''
|
||||
Skip landmarks.
|
||||
|
Loading…
Reference in New Issue
Block a user