code: WIP
This commit is contained in:
parent
0a45c9d1bd
commit
0aca4ec9c1
195
code/expt/copenhagen-sel.py
Normal file
195
code/expt/copenhagen-sel.py
Normal file
@ -0,0 +1,195 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import sys
|
||||||
|
sys.path.insert(1, '../lib')
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
from datetime import datetime
|
||||||
|
from geopy.distance import distance
|
||||||
|
import lmdk_bgt
|
||||||
|
import lmdk_lib
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
res_file = '/home/manos/Cloud/Data/Copenhagen/Results.zip'
|
||||||
|
# Contacts for all users
|
||||||
|
cont_data = lmdk_lib.load_data(args, 'cont')
|
||||||
|
# Contacts for landmark's percentages for all users
|
||||||
|
lmdk_data = lmdk_lib.load_data(args, 'usrs_data')
|
||||||
|
# The name of the dataset
|
||||||
|
d = 'Copenhagen'
|
||||||
|
# The user's id
|
||||||
|
uid = '449'
|
||||||
|
# The landmarks percentages
|
||||||
|
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||||||
|
# The privacy budget
|
||||||
|
epsilon = 1.0
|
||||||
|
|
||||||
|
# Number of methods
|
||||||
|
n = 3
|
||||||
|
# Width of bars
|
||||||
|
bar_width = 1/(n + 1)
|
||||||
|
# The x axis
|
||||||
|
x_i = np.arange(len(lmdks_pct))
|
||||||
|
x_margin = bar_width*(n/2 + 1)
|
||||||
|
|
||||||
|
print('\n##############################', d, '\n')
|
||||||
|
# Get user's contacts sequence
|
||||||
|
seq = cont_data[cont_data[:, 1] == float(uid)][:1000]
|
||||||
|
|
||||||
|
# Initialize plot
|
||||||
|
lmdk_lib.plot_init()
|
||||||
|
# The x axis
|
||||||
|
plt.xticks(x_i, np.array(lmdks_pct, int))
|
||||||
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||||
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||||
|
# The y axis
|
||||||
|
plt.ylabel('Mean absolute error (%)') # Set y axis label.
|
||||||
|
# plt.yscale('log')
|
||||||
|
plt.ylim(0, 100)
|
||||||
|
# Bar offset
|
||||||
|
x_offset = -(bar_width/2)*(n - 1)
|
||||||
|
|
||||||
|
mae_u = np.zeros(len(lmdks_pct))
|
||||||
|
mae_s = np.zeros(len(lmdks_pct))
|
||||||
|
mae_a = np.zeros(len(lmdks_pct))
|
||||||
|
mae_evt = 0
|
||||||
|
mae_usr = 0
|
||||||
|
|
||||||
|
for i, pct in enumerate(lmdks_pct):
|
||||||
|
# Find landmarks
|
||||||
|
lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
|
||||||
|
|
||||||
|
for _ in range(args.iter):
|
||||||
|
|
||||||
|
eps_sel = 0
|
||||||
|
if pct != 0 and pct != 100:
|
||||||
|
# Get landmarks timestamps in sequence
|
||||||
|
lmdks_seq = lmdk_lib.find_lmdks_seq(seq, lmdks)
|
||||||
|
# Turn landmarks to histogram
|
||||||
|
hist, h = lmdk_lib.get_hist(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Find all possible options
|
||||||
|
opts = lmdk_sel.get_opts_from_top_h(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Landmarks selection budget
|
||||||
|
eps_sel = epsilon/(len(lmdks_seq) + 1)
|
||||||
|
# Get private landmarks timestamps
|
||||||
|
lmdks_seq, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, 1.0, eps_sel)
|
||||||
|
# Get actual landmarks values
|
||||||
|
lmdks = seq[lmdks_seq]
|
||||||
|
|
||||||
|
# Skip
|
||||||
|
rls_data_s, bgts_s = lmdk_bgt.skip_cont(seq, lmdks, epsilon - eps_sel)
|
||||||
|
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||||||
|
mae_s[i] += lmdk_bgt.mae_cont(rls_data_s)/args.iter
|
||||||
|
|
||||||
|
# Uniform
|
||||||
|
rls_data_u, bgts_u = lmdk_bgt.uniform_cont(seq, lmdks, epsilon - eps_sel)
|
||||||
|
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_u)
|
||||||
|
mae_u[i] += lmdk_bgt.mae_cont(rls_data_u)/args.iter
|
||||||
|
|
||||||
|
# Adaptive
|
||||||
|
rls_data_a, _, _ = lmdk_bgt.adaptive_cont(seq, lmdks, epsilon - eps_sel, .5, .5)
|
||||||
|
mae_a[i] += lmdk_bgt.mae_cont(rls_data_a)/args.iter
|
||||||
|
|
||||||
|
# Calculate once
|
||||||
|
if i == 0:
|
||||||
|
# Event
|
||||||
|
rls_data_evt, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 0), epsilon)
|
||||||
|
mae_evt += lmdk_bgt.mae_cont(rls_data_evt)/args.iter
|
||||||
|
# User
|
||||||
|
rls_data_usr, _ = lmdk_bgt.uniform_cont(seq, lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, 100), epsilon)
|
||||||
|
mae_usr += lmdk_bgt.mae_cont(rls_data_usr)/args.iter
|
||||||
|
|
||||||
|
mae_u *= 100
|
||||||
|
mae_s *= 100
|
||||||
|
mae_a *= 100
|
||||||
|
mae_evt *= 100
|
||||||
|
mae_usr *= 100
|
||||||
|
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_evt,
|
||||||
|
color = '#212121',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.05, 'event')
|
||||||
|
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_usr,
|
||||||
|
color = '#616161',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.05, 'user')
|
||||||
|
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_s,
|
||||||
|
bar_width,
|
||||||
|
label='Skip',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_u,
|
||||||
|
bar_width,
|
||||||
|
label='Uniform',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_a,
|
||||||
|
bar_width,
|
||||||
|
label='Adaptive',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
|
||||||
|
path = str('../../rslt/bgt_cmp/' + d)
|
||||||
|
# Plot legend
|
||||||
|
lmdk_lib.plot_legend()
|
||||||
|
# # Show plot
|
||||||
|
# plt.show()
|
||||||
|
# Save plot
|
||||||
|
lmdk_lib.save_plot(path + '-sel.pdf')
|
||||||
|
print('[OK]', flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
'''
|
||||||
|
Parse arguments.
|
||||||
|
|
||||||
|
Optional:
|
||||||
|
res - The results archive file.
|
||||||
|
iter - The total iterations.
|
||||||
|
'''
|
||||||
|
# Create argument parser.
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
# Mandatory arguments.
|
||||||
|
|
||||||
|
# Optional arguments.
|
||||||
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/Copenhagen/Results.zip')
|
||||||
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||||||
|
|
||||||
|
# Parse arguments.
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
main(parse_args())
|
||||||
|
end_time = time.time()
|
||||||
|
print('##############################')
|
||||||
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
||||||
|
print('##############################')
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print('Interrupted by user.')
|
||||||
|
exit()
|
185
code/expt/hue-sel.py
Normal file
185
code/expt/hue-sel.py
Normal file
@ -0,0 +1,185 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import sys
|
||||||
|
sys.path.insert(1, '../lib')
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
from datetime import datetime
|
||||||
|
from geopy.distance import distance
|
||||||
|
import lmdk_bgt
|
||||||
|
import lmdk_lib
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
res_file = '/home/manos/Cloud/Data/HUE/Results.zip'
|
||||||
|
# User's consumption
|
||||||
|
seq = lmdk_lib.load_data(args, 'cons')
|
||||||
|
# The name of the dataset
|
||||||
|
d = 'HUE'
|
||||||
|
# The landmarks percentages
|
||||||
|
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||||||
|
# Landmarks' thresholds
|
||||||
|
lmdks_th = [0, .54, .68, .88, 1.12, 10]
|
||||||
|
# The privacy budget
|
||||||
|
epsilon = 10.0
|
||||||
|
|
||||||
|
# Number of methods
|
||||||
|
n = 3
|
||||||
|
# Width of bars
|
||||||
|
bar_width = 1/(n + 1)
|
||||||
|
# The x axis
|
||||||
|
x_i = np.arange(len(lmdks_pct))
|
||||||
|
x_margin = bar_width*(n/2 + 1)
|
||||||
|
|
||||||
|
print('\n##############################', d, '\n')
|
||||||
|
|
||||||
|
# Initialize plot
|
||||||
|
lmdk_lib.plot_init()
|
||||||
|
# The x axis
|
||||||
|
plt.xticks(x_i, np.array(lmdks_pct, int))
|
||||||
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||||
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||||
|
# The y axis
|
||||||
|
plt.ylabel('Mean absolute error (kWh)') # Set y axis label.
|
||||||
|
plt.yscale('log')
|
||||||
|
# plt.ylim(.01, 10000)
|
||||||
|
# Bar offset
|
||||||
|
x_offset = -(bar_width/2)*(n - 1)
|
||||||
|
|
||||||
|
mae_u = np.zeros(len(lmdks_pct))
|
||||||
|
mae_s = np.zeros(len(lmdks_pct))
|
||||||
|
mae_a = np.zeros(len(lmdks_pct))
|
||||||
|
mae_evt = 0
|
||||||
|
mae_usr = 0
|
||||||
|
|
||||||
|
for i, pct in enumerate(lmdks_pct):
|
||||||
|
# Find landmarks
|
||||||
|
lmdks = seq[seq[:, 1] < lmdks_th[i]]
|
||||||
|
|
||||||
|
for _ in range(args.iter):
|
||||||
|
|
||||||
|
eps_sel = 0
|
||||||
|
if pct != 0 and pct != 100:
|
||||||
|
# Get landmarks timestamps in sequence
|
||||||
|
lmdks_seq = lmdk_lib.find_lmdks_seq(seq, lmdks)
|
||||||
|
# Turn landmarks to histogram
|
||||||
|
hist, h = lmdk_lib.get_hist(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Find all possible options
|
||||||
|
opts = lmdk_sel.get_opts_from_top_h(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Landmarks selection budget
|
||||||
|
eps_sel = epsilon/(len(lmdks_seq) + 1)
|
||||||
|
# Get private landmarks timestamps
|
||||||
|
lmdks_seq, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, 1.0, eps_sel)
|
||||||
|
# Get actual landmarks values
|
||||||
|
lmdks = seq[lmdks_seq]
|
||||||
|
|
||||||
|
# Skip
|
||||||
|
rls_data_s, bgts_s = lmdk_bgt.skip_cons(seq, lmdks, epsilon - eps_sel)
|
||||||
|
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||||||
|
mae_s[i] += lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter
|
||||||
|
|
||||||
|
# Uniform
|
||||||
|
rls_data_u, bgts_u = lmdk_bgt.uniform_cons(seq, lmdks, epsilon - eps_sel)
|
||||||
|
mae_u[i] += lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter
|
||||||
|
|
||||||
|
# Adaptive
|
||||||
|
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, epsilon - eps_sel, .5, .5)
|
||||||
|
mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
|
||||||
|
|
||||||
|
# Calculate once
|
||||||
|
# Event
|
||||||
|
if i == 0:
|
||||||
|
rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
|
||||||
|
mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
|
||||||
|
# User
|
||||||
|
if i == 0:
|
||||||
|
rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
|
||||||
|
mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
|
||||||
|
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_evt,
|
||||||
|
color = '#212121',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
||||||
|
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_usr,
|
||||||
|
color = '#616161',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
||||||
|
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_s,
|
||||||
|
bar_width,
|
||||||
|
label='Skip',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_u,
|
||||||
|
bar_width,
|
||||||
|
label='Uniform',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_a,
|
||||||
|
bar_width,
|
||||||
|
label='Adaptive',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
|
||||||
|
path = str('../../rslt/bgt_cmp/' + d)
|
||||||
|
# Plot legend
|
||||||
|
lmdk_lib.plot_legend()
|
||||||
|
# Show plot
|
||||||
|
# plt.show()
|
||||||
|
# Save plot
|
||||||
|
lmdk_lib.save_plot(path + '-sel.pdf')
|
||||||
|
print('[OK]', flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
'''
|
||||||
|
Parse arguments.
|
||||||
|
|
||||||
|
Optional:
|
||||||
|
res - The results archive file.
|
||||||
|
iter - The total iterations.
|
||||||
|
'''
|
||||||
|
# Create argument parser.
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
# Mandatory arguments.
|
||||||
|
|
||||||
|
# Optional arguments.
|
||||||
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
|
||||||
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||||||
|
|
||||||
|
# Parse arguments.
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
main(parse_args())
|
||||||
|
end_time = time.time()
|
||||||
|
print('##############################')
|
||||||
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
||||||
|
print('##############################')
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print('Interrupted by user.')
|
||||||
|
exit()
|
211
code/expt/t-drive-sel.py
Normal file
211
code/expt/t-drive-sel.py
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import sys
|
||||||
|
sys.path.insert(1, '../lib')
|
||||||
|
import argparse
|
||||||
|
from datetime import datetime
|
||||||
|
from geopy.distance import distance
|
||||||
|
import lmdk_bgt
|
||||||
|
import lmdk_lib
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
# The data files
|
||||||
|
data_files = {
|
||||||
|
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
|
||||||
|
}
|
||||||
|
# Data related info
|
||||||
|
data_info = {
|
||||||
|
'T-drive': {
|
||||||
|
'uid': 2,
|
||||||
|
'lmdks': {
|
||||||
|
0: {'dist': 0, 'per': 1000}, # 0.0%
|
||||||
|
20: {'dist': 2095, 'per': 30}, # 19.6%
|
||||||
|
40: {'dist': 2790, 'per': 30}, # 40.2%
|
||||||
|
60: {'dist': 3590, 'per': 30}, # 59.9%
|
||||||
|
80: {'dist': 4825, 'per': 30}, # 79.4%
|
||||||
|
100: {'dist': 10350, 'per': 30} # 100.0%
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
# The data sets
|
||||||
|
data_sets = {}
|
||||||
|
# Load data sets
|
||||||
|
for df in data_files:
|
||||||
|
args.res = data_files[df]
|
||||||
|
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
|
||||||
|
# Geo-I configuration
|
||||||
|
# epsilon = level/radius
|
||||||
|
# Radius is in meters
|
||||||
|
bgt_conf = [
|
||||||
|
{'epsilon': 1},
|
||||||
|
]
|
||||||
|
|
||||||
|
# Number of methods
|
||||||
|
n = 3
|
||||||
|
# Width of bars
|
||||||
|
bar_width = 1/(n + 1)
|
||||||
|
# The x axis
|
||||||
|
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
|
||||||
|
x_margin = bar_width*(n/2 + 1)
|
||||||
|
|
||||||
|
for d in data_sets:
|
||||||
|
print('\n##############################', d, '\n')
|
||||||
|
args.res = data_files[d]
|
||||||
|
data = data_sets[d]
|
||||||
|
# Truncate trajectory according to arguments
|
||||||
|
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
|
||||||
|
|
||||||
|
# Initialize plot
|
||||||
|
lmdk_lib.plot_init()
|
||||||
|
# The x axis
|
||||||
|
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
|
||||||
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||||||
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||||||
|
# The y axis
|
||||||
|
plt.ylabel('Mean absolute error (m)') # Set y axis label.
|
||||||
|
plt.yscale('log')
|
||||||
|
# plt.ylim(1, 100000000)
|
||||||
|
# Bar offset
|
||||||
|
x_offset = -(bar_width/2)*(n - 1)
|
||||||
|
|
||||||
|
mae_u = np.zeros(len(data_info[d]['lmdks']))
|
||||||
|
mae_s = np.zeros(len(data_info[d]['lmdks']))
|
||||||
|
mae_a = np.zeros(len(data_info[d]['lmdks']))
|
||||||
|
mae_evt = 0
|
||||||
|
mae_usr = 0
|
||||||
|
for i, lmdk in enumerate(data_info[d]['lmdks']):
|
||||||
|
# Find landmarks
|
||||||
|
args.dist = data_info[d]['lmdks'][lmdk]['dist']
|
||||||
|
args.per = data_info[d]['lmdks'][lmdk]['per']
|
||||||
|
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
|
||||||
|
for bgt in bgt_conf:
|
||||||
|
for _ in range(args.iter):
|
||||||
|
|
||||||
|
eps_sel = 0
|
||||||
|
if lmdk != 0 and lmdk != 100:
|
||||||
|
# Get landmarks timestamps in sequence
|
||||||
|
lmdks_seq = lmdk_lib.find_lmdks_seq(seq, lmdks)
|
||||||
|
# Turn landmarks to histogram
|
||||||
|
hist, h = lmdk_lib.get_hist(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Find all possible options
|
||||||
|
opts = lmdk_sel.get_opts_from_top_h(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||||||
|
# Landmarks selection budget
|
||||||
|
eps_sel = bgt['epsilon']/(len(lmdks_seq) + 1)
|
||||||
|
# Get private landmarks timestamps
|
||||||
|
lmdks_seq, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, 1.0, eps_sel)
|
||||||
|
# Get actual landmarks values
|
||||||
|
lmdks = seq[lmdks_seq]
|
||||||
|
|
||||||
|
# Skip
|
||||||
|
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, bgt['epsilon'] - eps_sel)
|
||||||
|
mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
|
||||||
|
|
||||||
|
# Uniform
|
||||||
|
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'] - eps_sel)
|
||||||
|
mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
|
||||||
|
|
||||||
|
# Adaptive
|
||||||
|
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, bgt['epsilon'] - eps_sel, .5, .5)
|
||||||
|
mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
|
||||||
|
|
||||||
|
# Event
|
||||||
|
if lmdk == 0:
|
||||||
|
rls_data_evt, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
|
||||||
|
mae_evt += lmdk_bgt.mae(seq, rls_data_evt)/args.iter
|
||||||
|
# User
|
||||||
|
if lmdk == 100:
|
||||||
|
rls_data_usr, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
|
||||||
|
mae_usr += lmdk_bgt.mae(seq, rls_data_usr)/args.iter
|
||||||
|
|
||||||
|
# Plot lines
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_evt,
|
||||||
|
color = '#212121',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
||||||
|
plt.axhline(
|
||||||
|
y = mae_usr,
|
||||||
|
color = '#616161',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
||||||
|
|
||||||
|
# Plot bars
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_s,
|
||||||
|
bar_width,
|
||||||
|
label='Skip',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_u,
|
||||||
|
bar_width,
|
||||||
|
label='Uniform',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
x_offset += bar_width
|
||||||
|
plt.bar(
|
||||||
|
x_i + x_offset,
|
||||||
|
mae_a,
|
||||||
|
bar_width,
|
||||||
|
label='Adaptive',
|
||||||
|
linewidth=lmdk_lib.line_width
|
||||||
|
)
|
||||||
|
|
||||||
|
path = str('../../rslt/bgt_cmp/' + d)
|
||||||
|
# Plot legend
|
||||||
|
lmdk_lib.plot_legend()
|
||||||
|
# Show plot
|
||||||
|
# plt.show()
|
||||||
|
# Save plot
|
||||||
|
lmdk_lib.save_plot(path + '-sel.pdf')
|
||||||
|
print('[OK]', flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
'''
|
||||||
|
Parse arguments.
|
||||||
|
|
||||||
|
Optional:
|
||||||
|
dist - The coordinates distance threshold in meters.
|
||||||
|
per - The timestaps period threshold in mimutes.
|
||||||
|
time - The total timestamps.
|
||||||
|
iter - The total iterations.
|
||||||
|
'''
|
||||||
|
# Create argument parser.
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
# Mandatory arguments.
|
||||||
|
|
||||||
|
# Optional arguments.
|
||||||
|
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
|
||||||
|
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
|
||||||
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
|
||||||
|
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
|
||||||
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||||||
|
|
||||||
|
# Parse arguments.
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
main(parse_args())
|
||||||
|
end_time = time.time()
|
||||||
|
print('##############################')
|
||||||
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
||||||
|
print('##############################')
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print('Interrupted by user.')
|
||||||
|
exit()
|
@ -907,6 +907,14 @@ def find_lmdks(usrs_data, args):
|
|||||||
return usrs_lmdks
|
return usrs_lmdks
|
||||||
|
|
||||||
|
|
||||||
|
def find_lmdks_seq(seq, lmdks):
|
||||||
|
lmdks_seq = []
|
||||||
|
for i, p in enumerate(seq):
|
||||||
|
if any(np.equal(lmdks, p).all(1)):
|
||||||
|
lmdks_seq.append(i + 1)
|
||||||
|
return np.numpy(lmdks_seq, dtype = int)
|
||||||
|
|
||||||
|
|
||||||
def find_lmdks_tim(lmdk_data, seq, uid, pct):
|
def find_lmdks_tim(lmdk_data, seq, uid, pct):
|
||||||
'''
|
'''
|
||||||
Find user's landmarks timestamps.
|
Find user's landmarks timestamps.
|
||||||
|
Loading…
Reference in New Issue
Block a user