thething: Added pf:thething-prv
This commit is contained in:
		@ -170,7 +170,33 @@ Theorem~\ref{theor:thething-prv} proposes how to achieve the desired privacy for
 | 
			
		||||
\end{theorem}
 | 
			
		||||
% \mk{To discuss.}
 | 
			
		||||
 | 
			
		||||
Due to space constraints, we omit the proof of Theorem~\ref{theor:thething-prv} and defer it for a longer version of this paper.
 | 
			
		||||
% Due to space constraints, we omit the proof of Theorem~\ref{theor:thething-prv} and defer it for a longer version of this paper.
 | 
			
		||||
\begin{proof}
 | 
			
		||||
  \label{pf:thething-prv}
 | 
			
		||||
  All mechanisms use independent randomness, and therefore for a series of events $S_T = {D_1, \dots, D_T}$ and outputs $(\pmb{o}_1, \dots, \pmb{o}_T) \in O \subseteq \mathcal{O}$ it holds that
 | 
			
		||||
 | 
			
		||||
  $$Pr[\mathcal{M}(S_T) = (\pmb{o}_1, \dots, \pmb{o}_T)] = \prod_{i \in [1, T]} Pr[\mathcal{M}_i(D_i) = \pmb{o}_i]$$
 | 
			
		||||
 | 
			
		||||
  Likewise, for any {\thething}-neighboring series of events $S'_T$ of $S_T$ with the same outputs $(\pmb{o}_1, \dots, \pmb{o}_T) \in O \subseteq \mathcal{O}$
 | 
			
		||||
 | 
			
		||||
  $$Pr[\mathcal{M}(S'_T) = (\pmb{o}_1, \dots, \pmb{o}_T)] = \prod_{i \in [1, T]} Pr[\mathcal{M}_i(D'_i) = \pmb{o}_i]$$
 | 
			
		||||
 | 
			
		||||
  Since $S_T$ and $S'_T$ are {\thething}-neighboring, there exists $i \in T$ such that $D_i = D'_i$ for a set of {\thethings} with timestamps $L$.
 | 
			
		||||
  Thus, we get
 | 
			
		||||
 | 
			
		||||
  $$\frac{Pr[\mathcal{M}(S_T) = (\pmb{o}_1, \dots, \pmb{o}_T)]}{Pr[\mathcal{M}(S'_T) = (\pmb{o}_1, \dots, \pmb{o}_T)]} = \prod_{i \in L \cup \{t\}} \frac{Pr[\mathcal{M}_i(D_i) = \pmb{o}_i]}{Pr[\mathcal{M}_i(D'_i) = \pmb{o}_i]}$$
 | 
			
		||||
 | 
			
		||||
  $D_i$ and $D'_i$ are neighboring for $i \in L \cup \{t\}$.
 | 
			
		||||
  $\mathcal{M}_i$ is differential private and from Definition~\ref{def:dp} we get that $\frac{Pr[\mathcal{M}_i(D_i) = \pmb{o}_i]}{Pr[\mathcal{M}_i(D'_i) = \pmb{o}_i]} \leq e^{\varepsilon_i}$.
 | 
			
		||||
  Hence, we can write
 | 
			
		||||
 | 
			
		||||
  $$\frac{Pr[\mathcal{M}(S_T) = (\pmb{o}_1, \dots, \pmb{o}_T)]}{Pr[\mathcal{M}(S'_T) = (\pmb{o}_1, \dots, \pmb{o}_T)]} \leq \prod_{i \in L \cup \{t\}} e^{\varepsilon_i} = e^{\sum_{i \in L \cup \{t\}} \varepsilon_i}$$
 | 
			
		||||
 | 
			
		||||
  For any $O \in \mathcal{O}$ we get $\frac{Pr[\mathcal{M}(S_T) \in O}{Pr[\mathcal{M}(S'_T) \in O]} \leq e^{\sum_{i \in L \cup \{t\}} \varepsilon_i}$.
 | 
			
		||||
  If the formula of Theorem~\ref{theor:thething-prv} holds, then we get $\frac{Pr[\mathcal{M}(S_T) \in O}{Pr[\mathcal{M}(S'_T) \in O]} \leq e^\varepsilon$.
 | 
			
		||||
  Due to Definition~\ref{def:thething-prv} this concludes our proof.
 | 
			
		||||
\end{proof}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsubsection{{\Thething} privacy mechanisms}
 | 
			
		||||
\label{subsec:lmdk-mechs}
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user