code: OCD
This commit is contained in:
		@ -28,6 +28,7 @@ MISS  = 0   # Number of additions to the cache.
 | 
				
			|||||||
TOTAL = 0   # Number of cache accesses.
 | 
					TOTAL = 0   # Number of cache accesses.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_data(path):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Read data from a file.
 | 
					    Read data from a file.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -36,7 +37,6 @@ TOTAL = 0   # Number of cache accesses.
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      data - A list of tuples [uid, timestamp, lng, lat, loc].
 | 
					      data - A list of tuples [uid, timestamp, lng, lat, loc].
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def load_data(path):
 | 
					 | 
				
			||||||
  print('Loading data from', os.path.abspath(path), '... ', end='')
 | 
					  print('Loading data from', os.path.abspath(path), '... ', end='')
 | 
				
			||||||
  data = []
 | 
					  data = []
 | 
				
			||||||
  try:
 | 
					  try:
 | 
				
			||||||
@ -50,6 +50,7 @@ def load_data(path):
 | 
				
			|||||||
    exit()
 | 
					    exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def save_output(path, t, e, a_b, a_f, a):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Save output to a file.
 | 
					    Save output to a file.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -63,7 +64,6 @@ def load_data(path):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      Nothing.
 | 
					      Nothing.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def save_output(path, t, e, a_b, a_f, a):
 | 
					 | 
				
			||||||
  # timestamp = time.strftime('%Y%m%d%H%M%S')
 | 
					  # timestamp = time.strftime('%Y%m%d%H%M%S')
 | 
				
			||||||
  print('Saving output to %s... ' %(path), end='', flush=True)
 | 
					  print('Saving output to %s... ' %(path), end='', flush=True)
 | 
				
			||||||
  os.makedirs(os.path.dirname(path), exist_ok=True)
 | 
					  os.makedirs(os.path.dirname(path), exist_ok=True)
 | 
				
			||||||
@ -74,6 +74,7 @@ def save_output(path, t, e, a_b, a_f, a):
 | 
				
			|||||||
  print('OK.', flush=True)
 | 
					  print('OK.', flush=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_timestamps(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get all the timestamps from the input data.
 | 
					    Get all the timestamps from the input data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -82,7 +83,6 @@ def save_output(path, t, e, a_b, a_f, a):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      timestamps - An ndarray of all of the timestamps from the input data.
 | 
					      timestamps - An ndarray of all of the timestamps from the input data.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_timestamps(data):
 | 
					 | 
				
			||||||
  print('Getting a list of all timestamps... ', end='', flush=True)
 | 
					  print('Getting a list of all timestamps... ', end='', flush=True)
 | 
				
			||||||
  timestamps = np.sort(np.unique(np.array(data)[:, 1]))
 | 
					  timestamps = np.sort(np.unique(np.array(data)[:, 1]))
 | 
				
			||||||
  if not len(timestamps):
 | 
					  if not len(timestamps):
 | 
				
			||||||
@ -103,6 +103,7 @@ def get_timestamps(data):
 | 
				
			|||||||
  return timestamps
 | 
					  return timestamps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_locs(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get all the unique locations from the input data.
 | 
					    Get all the unique locations from the input data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -111,7 +112,6 @@ def get_timestamps(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      locs - A sorted ndarray of all the unique locations int the input data.
 | 
					      locs - A sorted ndarray of all the unique locations int the input data.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_locs(data):
 | 
					 | 
				
			||||||
  print('Getting a list of all locations... ', end='', flush=True)
 | 
					  print('Getting a list of all locations... ', end='', flush=True)
 | 
				
			||||||
  locs = np.sort(np.unique(np.array(data)[:, 4].astype(np.int)))
 | 
					  locs = np.sort(np.unique(np.array(data)[:, 4].astype(np.int)))
 | 
				
			||||||
  if not len(locs):
 | 
					  if not len(locs):
 | 
				
			||||||
@ -123,6 +123,7 @@ def get_locs(data):
 | 
				
			|||||||
  return list(map(str, locs))
 | 
					  return list(map(str, locs))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_cnts(data, t):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the counts at every location for a specific timestamp.
 | 
					    Get the counts at every location for a specific timestamp.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -132,7 +133,6 @@ def get_locs(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      cnts - A dict {loc:cnt} with the counts at every location for a specific timestamp.
 | 
					      cnts - A dict {loc:cnt} with the counts at every location for a specific timestamp.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_cnts(data, t):
 | 
					 | 
				
			||||||
  print('Getting all counts at %s... ' %(t), end='', flush=True)
 | 
					  print('Getting all counts at %s... ' %(t), end='', flush=True)
 | 
				
			||||||
  locs = get_locs(data)
 | 
					  locs = get_locs(data)
 | 
				
			||||||
  cnts = dict.fromkeys(locs, 0)
 | 
					  cnts = dict.fromkeys(locs, 0)
 | 
				
			||||||
@ -145,6 +145,7 @@ def get_cnts(data, t):
 | 
				
			|||||||
  return cnts
 | 
					  return cnts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_all_cnts(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the counts at every location for every timestamp.
 | 
					    Get the counts at every location for every timestamp.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -153,7 +154,6 @@ def get_cnts(data, t):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      cnts - A dict {timestamp:loc} with all the counts at every location for every timestamp.
 | 
					      cnts - A dict {timestamp:loc} with all the counts at every location for every timestamp.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_all_cnts(data):
 | 
					 | 
				
			||||||
  cnts = {}
 | 
					  cnts = {}
 | 
				
			||||||
  for d in data:
 | 
					  for d in data:
 | 
				
			||||||
    key = d[1] + '@' + d[4]
 | 
					    key = d[1] + '@' + d[4]
 | 
				
			||||||
@ -163,6 +163,7 @@ def get_all_cnts(data):
 | 
				
			|||||||
  return cnts
 | 
					  return cnts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_usrs(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get a list of unique users in the input data set.
 | 
					    Get a list of unique users in the input data set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -171,7 +172,6 @@ def get_all_cnts(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      users - An ndarray of all unique users.
 | 
					      users - An ndarray of all unique users.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_usrs(data):
 | 
					 | 
				
			||||||
  users = np.sort(np.unique(np.array(data)[:, 0].astype(np.int)))
 | 
					  users = np.sort(np.unique(np.array(data)[:, 0].astype(np.int)))
 | 
				
			||||||
  if not len(users):
 | 
					  if not len(users):
 | 
				
			||||||
    print('No users found.')
 | 
					    print('No users found.')
 | 
				
			||||||
@ -181,6 +181,7 @@ def get_usrs(data):
 | 
				
			|||||||
  return users
 | 
					  return users
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_usr_data(data, id):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the data of a particular user from a data set.
 | 
					    Get the data of a particular user from a data set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -190,7 +191,6 @@ def get_usrs(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      output - A list of the data of the targeted user.
 | 
					      output - A list of the data of the targeted user.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_usr_data(data, id):
 | 
					 | 
				
			||||||
  output = []
 | 
					  output = []
 | 
				
			||||||
  for d in data:
 | 
					  for d in data:
 | 
				
			||||||
    if (d[0] == str(id)):
 | 
					    if (d[0] == str(id)):
 | 
				
			||||||
@ -200,6 +200,7 @@ def get_usr_data(data, id):
 | 
				
			|||||||
  return output
 | 
					  return output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_usrs_data(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the data of every user in a data set.
 | 
					    Get the data of every user in a data set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -208,13 +209,13 @@ def get_usr_data(data, id):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      output - A dict {usr, [usr_data]} with the data of each user.
 | 
					      output - A dict {usr, [usr_data]} with the data of each user.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_usrs_data(data):
 | 
					 | 
				
			||||||
  output = {}
 | 
					  output = {}
 | 
				
			||||||
  for d in data:
 | 
					  for d in data:
 | 
				
			||||||
    output[d[0]] = output.get(d[0], []) + [d]
 | 
					    output[d[0]] = output.get(d[0], []) + [d]
 | 
				
			||||||
  return output
 | 
					  return output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_usr_traj(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the trajectory of a user from her data.
 | 
					    Get the trajectory of a user from her data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -223,7 +224,6 @@ def get_usrs_data(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      traj - A list [(timestamp, loc)] with the locations and corresponding timestamps that the user was at.
 | 
					      traj - A list [(timestamp, loc)] with the locations and corresponding timestamps that the user was at.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_usr_traj(data):
 | 
					 | 
				
			||||||
  traj = []
 | 
					  traj = []
 | 
				
			||||||
  for d in data:
 | 
					  for d in data:
 | 
				
			||||||
    traj.append((d[1], d[4]))
 | 
					    traj.append((d[1], d[4]))
 | 
				
			||||||
@ -232,6 +232,7 @@ def get_usr_traj(data):
 | 
				
			|||||||
  return traj
 | 
					  return traj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_poss_trans(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get all the possible transitions.
 | 
					    Get all the possible transitions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -240,7 +241,6 @@ def get_usr_traj(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      trans - A set with all the possible forward transitions in the input.
 | 
					      trans - A set with all the possible forward transitions in the input.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_poss_trans(data):
 | 
					 | 
				
			||||||
  print('Getting possible transitions... ', end='', flush=True)
 | 
					  print('Getting possible transitions... ', end='', flush=True)
 | 
				
			||||||
  trans = set()
 | 
					  trans = set()
 | 
				
			||||||
  for u, u_data in data.items():
 | 
					  for u, u_data in data.items():
 | 
				
			||||||
@ -253,6 +253,7 @@ def get_poss_trans(data):
 | 
				
			|||||||
  return trans
 | 
					  return trans
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_bwd_trans(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get all backward transitions in a data set.
 | 
					    Get all backward transitions in a data set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -262,7 +263,6 @@ def get_poss_trans(data):
 | 
				
			|||||||
      trans - A dict {(t, t-1):[transitions]} with all the backward transitions
 | 
					      trans - A dict {(t, t-1):[transitions]} with all the backward transitions
 | 
				
			||||||
              at every sequential timestamp pair in the input data set.
 | 
					              at every sequential timestamp pair in the input data set.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_bwd_trans(data):
 | 
					 | 
				
			||||||
  print('Getting all backward transitions... ', end='', flush=True)
 | 
					  print('Getting all backward transitions... ', end='', flush=True)
 | 
				
			||||||
  trans = {}
 | 
					  trans = {}
 | 
				
			||||||
  for u, u_data in data.items():
 | 
					  for u, u_data in data.items():
 | 
				
			||||||
@ -276,6 +276,7 @@ def get_bwd_trans(data):
 | 
				
			|||||||
  return trans
 | 
					  return trans
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_fwd_trans(data):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get all forward transitions in a data set.
 | 
					    Get all forward transitions in a data set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -285,7 +286,6 @@ def get_bwd_trans(data):
 | 
				
			|||||||
      trans - A dict {(t-1, t):[transitions]} with all the forward transitions
 | 
					      trans - A dict {(t-1, t):[transitions]} with all the forward transitions
 | 
				
			||||||
              at every sequential timestamp pair in the input data set.
 | 
					              at every sequential timestamp pair in the input data set.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_fwd_trans(data):
 | 
					 | 
				
			||||||
  print('Getting all forward transitions... ', end='', flush=True)
 | 
					  print('Getting all forward transitions... ', end='', flush=True)
 | 
				
			||||||
  trans = {}
 | 
					  trans = {}
 | 
				
			||||||
  for u, u_data in data.items():
 | 
					  for u, u_data in data.items():
 | 
				
			||||||
@ -299,6 +299,7 @@ def get_fwd_trans(data):
 | 
				
			|||||||
  return trans
 | 
					  return trans
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def safe_div(a, b):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Divide two numbers. If the divisor is 0 return inf.
 | 
					    Divide two numbers. If the divisor is 0 return inf.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -308,12 +309,12 @@ def get_fwd_trans(data):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      The float result of the division.
 | 
					      The float result of the division.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def safe_div(a, b):
 | 
					 | 
				
			||||||
  if b == 0:
 | 
					  if b == 0:
 | 
				
			||||||
    return math.inf
 | 
					    return math.inf
 | 
				
			||||||
  return float(a/b)
 | 
					  return float(a/b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def max_val(q, d, a):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the maximum value of the objective function.
 | 
					    Calculate the maximum value of the objective function.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -325,12 +326,12 @@ def safe_div(a, b):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      The maximum value of the objective function.
 | 
					      The maximum value of the objective function.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def max_val(q, d, a):
 | 
					 | 
				
			||||||
  if a == math.inf:
 | 
					  if a == math.inf:
 | 
				
			||||||
    return math.nan
 | 
					    return math.nan
 | 
				
			||||||
  return (q*(math.exp(a) - 1) + 1)/(d*(math.exp(a) - 1) + 1)
 | 
					  return (q*(math.exp(a) - 1) + 1)/(d*(math.exp(a) - 1) + 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def find_qd(p, a):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Find two different rows (q and d) of a transition matrix (p)
 | 
					    Find two different rows (q and d) of a transition matrix (p)
 | 
				
			||||||
    that maximize the product of the objective function and return
 | 
					    that maximize the product of the objective function and return
 | 
				
			||||||
@ -345,7 +346,6 @@ def max_val(q, d, a):
 | 
				
			|||||||
      sum_q - The sum of the elements of q.
 | 
					      sum_q - The sum of the elements of q.
 | 
				
			||||||
      sum_d - The sum of the elements of d.
 | 
					      sum_d - The sum of the elements of d.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def find_qd(p, a):
 | 
					 | 
				
			||||||
  res = 0.0
 | 
					  res = 0.0
 | 
				
			||||||
  sum_q, sum_d = 0.0, 0.0
 | 
					  sum_q, sum_d = 0.0, 0.0
 | 
				
			||||||
  for q in p:  # A row from the transition matrix.
 | 
					  for q in p:  # A row from the transition matrix.
 | 
				
			||||||
@ -374,6 +374,7 @@ def find_qd(p, a):
 | 
				
			|||||||
  return sum_q, sum_d
 | 
					  return sum_q, sum_d
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gen_data(usrs, timestamps, locs):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Generate data.
 | 
					    Generate data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -384,7 +385,6 @@ def find_qd(p, a):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      data - The generated data.
 | 
					      data - The generated data.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def gen_data(usrs, timestamps, locs):
 | 
					 | 
				
			||||||
  print('Generating data... ', end='', flush=True)
 | 
					  print('Generating data... ', end='', flush=True)
 | 
				
			||||||
  # Generate timestamps.
 | 
					  # Generate timestamps.
 | 
				
			||||||
  ts = []
 | 
					  ts = []
 | 
				
			||||||
@ -412,6 +412,7 @@ def gen_data(usrs, timestamps, locs):
 | 
				
			|||||||
  return data
 | 
					  return data
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gen_trans_mt(n, s):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Generate a transition matrix.
 | 
					    Generate a transition matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -423,7 +424,6 @@ def gen_data(usrs, timestamps, locs):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      p_ - The transition matrix.
 | 
					      p_ - The transition matrix.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def gen_trans_mt(n, s):
 | 
					 | 
				
			||||||
  if DEBUG:
 | 
					  if DEBUG:
 | 
				
			||||||
    print('Generating transition matrix %dx%d with s = %.4f... ' %(n, n, s), end='', flush=True)
 | 
					    print('Generating transition matrix %dx%d with s = %.4f... ' %(n, n, s), end='', flush=True)
 | 
				
			||||||
  p = np.zeros((n, n), float)
 | 
					  p = np.zeros((n, n), float)
 | 
				
			||||||
@ -439,6 +439,7 @@ def gen_trans_mt(n, s):
 | 
				
			|||||||
  return p_
 | 
					  return p_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_trans_mt(locs, trans):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the transition matrix
 | 
					    Get the transition matrix
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -449,7 +450,6 @@ def gen_trans_mt(n, s):
 | 
				
			|||||||
      p - A 2d dict {{locs}{locs}} containing the
 | 
					      p - A 2d dict {{locs}{locs}} containing the
 | 
				
			||||||
          corresponding location transition probabilities.
 | 
					          corresponding location transition probabilities.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_trans_mt(locs, trans):
 | 
					 | 
				
			||||||
  if DEBUG:
 | 
					  if DEBUG:
 | 
				
			||||||
    print('Generating the transition matrix... ', end='', flush=True)
 | 
					    print('Generating the transition matrix... ', end='', flush=True)
 | 
				
			||||||
  # Initialize the transition matrix.
 | 
					  # Initialize the transition matrix.
 | 
				
			||||||
@ -476,6 +476,7 @@ def get_trans_mt(locs, trans):
 | 
				
			|||||||
  return p
 | 
					  return p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_entropy(mt):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the measure-theoretic (Kolmogorov-Sinai) entropy
 | 
					    Calculate the measure-theoretic (Kolmogorov-Sinai) entropy
 | 
				
			||||||
    of a transition matrix.
 | 
					    of a transition matrix.
 | 
				
			||||||
@ -485,7 +486,6 @@ def get_trans_mt(locs, trans):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      h - The Kolmogorov-Sinai entropy of the matrix.
 | 
					      h - The Kolmogorov-Sinai entropy of the matrix.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_entropy(mt):
 | 
					 | 
				
			||||||
  if DEBUG:
 | 
					  if DEBUG:
 | 
				
			||||||
    print('Calculating the measure-theoretic entropy... ', end='', flush=True)
 | 
					    print('Calculating the measure-theoretic entropy... ', end='', flush=True)
 | 
				
			||||||
  h = 0.0
 | 
					  h = 0.0
 | 
				
			||||||
@ -523,6 +523,7 @@ def get_entropy(mt):
 | 
				
			|||||||
  return h
 | 
					  return h
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_2darray(mt):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Convert a 2d dict to a 2d array.
 | 
					    Convert a 2d dict to a 2d array.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -531,7 +532,6 @@ def get_entropy(mt):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      p - The 2d numpy array.
 | 
					      p - The 2d numpy array.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_2darray(mt):
 | 
					 | 
				
			||||||
  if type(mt) == type(np.array([])):
 | 
					  if type(mt) == type(np.array([])):
 | 
				
			||||||
    return mt
 | 
					    return mt
 | 
				
			||||||
  p = np.zeros((len(mt), len(mt)), float)
 | 
					  p = np.zeros((len(mt), len(mt)), float)
 | 
				
			||||||
@ -540,6 +540,7 @@ def get_2darray(mt):
 | 
				
			|||||||
  return p
 | 
					  return p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_laplace_pd(ts, t, sc):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get a Laplace probability distribution.
 | 
					    Get a Laplace probability distribution.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -550,12 +551,12 @@ def get_2darray(mt):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      The probability distribution.
 | 
					      The probability distribution.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_laplace_pd(ts, t, sc):
 | 
					 | 
				
			||||||
  x = np.arange(0, len(ts), 1)
 | 
					  x = np.arange(0, len(ts), 1)
 | 
				
			||||||
  loc = np.where(ts == t)
 | 
					  loc = np.where(ts == t)
 | 
				
			||||||
  return laplace.pdf(x, loc=loc, scale=sc)[0]
 | 
					  return laplace.pdf(x, loc=loc, scale=sc)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_norm_pd(ts, t, sc):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get a Gaussian probability distribution.
 | 
					    Get a Gaussian probability distribution.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -566,12 +567,12 @@ def get_laplace_pd(ts, t, sc):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      The probability distribution.
 | 
					      The probability distribution.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_norm_pd(ts, t, sc):
 | 
					 | 
				
			||||||
  x = np.arange(0, len(ts), 1)
 | 
					  x = np.arange(0, len(ts), 1)
 | 
				
			||||||
  loc = np.where(ts == t)
 | 
					  loc = np.where(ts == t)
 | 
				
			||||||
  return norm.pdf(x, loc=loc, scale=sc)[0]
 | 
					  return norm.pdf(x, loc=loc, scale=sc)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_sample(ts, t, pct, pd):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get a sample from the time series.
 | 
					    Get a sample from the time series.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -584,7 +585,6 @@ def get_norm_pd(ts, t, sc):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      spl - An ndarray of the sampled timestamps.
 | 
					      spl - An ndarray of the sampled timestamps.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_sample(ts, t, pct, pd):
 | 
					 | 
				
			||||||
  if DEBUG:
 | 
					  if DEBUG:
 | 
				
			||||||
    print('Sampling %.2f%% of %s at %s... ' %(pct*100, ts, t), end='', flush=True)
 | 
					    print('Sampling %.2f%% of %s at %s... ' %(pct*100, ts, t), end='', flush=True)
 | 
				
			||||||
  # Check that it is a valid timestamp.
 | 
					  # Check that it is a valid timestamp.
 | 
				
			||||||
@ -604,6 +604,7 @@ def get_sample(ts, t, pct, pd):
 | 
				
			|||||||
  return spl
 | 
					  return spl
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def priv_l(p, a, e):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the backward/forward privacy loss at the current
 | 
					    Calculate the backward/forward privacy loss at the current
 | 
				
			||||||
    timestamp.
 | 
					    timestamp.
 | 
				
			||||||
@ -617,11 +618,11 @@ def get_sample(ts, t, pct, pd):
 | 
				
			|||||||
      The backward/forward privacy loss at the current
 | 
					      The backward/forward privacy loss at the current
 | 
				
			||||||
      timestamp.
 | 
					      timestamp.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def priv_l(p, a, e):
 | 
					 | 
				
			||||||
  sum_q, sum_d = find_qd(p, a)
 | 
					  sum_q, sum_d = find_qd(p, a)
 | 
				
			||||||
  return math.log(max_val(sum_q, sum_d, a)) + e
 | 
					  return math.log(max_val(sum_q, sum_d, a)) + e
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def priv_l_m(p, a, e):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the backward/forward privacy loss at the current
 | 
					    Calculate the backward/forward privacy loss at the current
 | 
				
			||||||
    timestamp using memoization.
 | 
					    timestamp using memoization.
 | 
				
			||||||
@ -635,7 +636,6 @@ def priv_l(p, a, e):
 | 
				
			|||||||
      The backward/forward privacy loss at the current
 | 
					      The backward/forward privacy loss at the current
 | 
				
			||||||
      timestamp.
 | 
					      timestamp.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def priv_l_m(p, a, e):
 | 
					 | 
				
			||||||
  key = xxhash.xxh64(p).hexdigest() + str(a) + str(e)
 | 
					  key = xxhash.xxh64(p).hexdigest() + str(a) + str(e)
 | 
				
			||||||
  global MEM, TOTAL, MISS
 | 
					  global MEM, TOTAL, MISS
 | 
				
			||||||
  TOTAL += 1
 | 
					  TOTAL += 1
 | 
				
			||||||
@ -648,6 +648,7 @@ def priv_l_m(p, a, e):
 | 
				
			|||||||
  return result
 | 
					  return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl(p, a, e, t):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at every timestamp.
 | 
					    Calculate the total backward privacy loss at every timestamp.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -661,13 +662,13 @@ def priv_l_m(p, a, e):
 | 
				
			|||||||
      a - The backward privacy loss at every timestamp
 | 
					      a - The backward privacy loss at every timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl(p, a, e, t):
 | 
					 | 
				
			||||||
  a[0] = e[0]
 | 
					  a[0] = e[0]
 | 
				
			||||||
  for i in range(1, t):
 | 
					  for i in range(1, t):
 | 
				
			||||||
    a[i] = priv_l(p, a[i - 1], e[i])
 | 
					    a[i] = priv_l(p, a[i - 1], e[i])
 | 
				
			||||||
  return a
 | 
					  return a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_m(p, a, e, t):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp with memoization.
 | 
					    timestamp with memoization.
 | 
				
			||||||
@ -683,12 +684,12 @@ def bpl(p, a, e, t):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_m(p, a, e, t):
 | 
					 | 
				
			||||||
  a[0] = e[0]
 | 
					  a[0] = e[0]
 | 
				
			||||||
  for i in range(1, t):
 | 
					  for i in range(1, t):
 | 
				
			||||||
    a[i] = priv_l_m(p, a[i - 1], e[i])
 | 
					    a[i] = priv_l_m(p, a[i - 1], e[i])
 | 
				
			||||||
  return a
 | 
					  return a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def bpl_lmdk_mem(p, a, e, t, lmdk):
 | 
					def bpl_lmdk_mem(p, a, e, t, lmdk):
 | 
				
			||||||
  # t is (near) the landmark
 | 
					  # t is (near) the landmark
 | 
				
			||||||
  if lmdk == t - 1 or t == lmdk:
 | 
					  if lmdk == t - 1 or t == lmdk:
 | 
				
			||||||
@ -702,6 +703,7 @@ def bpl_lmdk_mem(p, a, e, t, lmdk):
 | 
				
			|||||||
  return a
 | 
					  return a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_s(p, e, i, w):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the static model, i.e., previous releases
 | 
					    timestamp using the static model, i.e., previous releases
 | 
				
			||||||
@ -717,7 +719,6 @@ def bpl_lmdk_mem(p, a, e, t, lmdk):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_s(p, e, i, w):
 | 
					 | 
				
			||||||
  if i - w > 1:
 | 
					  if i - w > 1:
 | 
				
			||||||
    # print('bpl_s: %d - %d [%d]' %(i, i - w, w))
 | 
					    # print('bpl_s: %d - %d [%d]' %(i, i - w, w))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w), bpl_s(p, e, i - w, w), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w), bpl_s(p, e, i - w, w), e[i - 1])
 | 
				
			||||||
@ -729,6 +730,7 @@ def bpl_s(p, e, i, w):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_s_m(p, e, i, w):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the static model, i.e., previous releases
 | 
					    timestamp using the static model, i.e., previous releases
 | 
				
			||||||
@ -744,7 +746,6 @@ def bpl_s(p, e, i, w):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_s_m(p, e, i, w):
 | 
					 | 
				
			||||||
  if i - w > 1:
 | 
					  if i - w > 1:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w), bpl_s_m(p, e, i - w, w), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w), bpl_s_m(p, e, i - w, w), e[i - 1])
 | 
				
			||||||
  elif i - w <= 1:
 | 
					  elif i - w <= 1:
 | 
				
			||||||
@ -753,6 +754,7 @@ def bpl_s_m(p, e, i, w):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_l(p, e, i, w, l):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the linear model, i.e., previous releases
 | 
					    timestamp using the linear model, i.e., previous releases
 | 
				
			||||||
@ -770,7 +772,6 @@ def bpl_s_m(p, e, i, w):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_l(p, e, i, w, l):
 | 
					 | 
				
			||||||
  if i - w*l > 1:
 | 
					  if i - w*l > 1:
 | 
				
			||||||
    # print('bpl_l: %d - %d [%d]' %(i, i - w*l, w*l))
 | 
					    # print('bpl_l: %d - %d [%d]' %(i, i - w*l, w*l))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w*l), bpl_l(p, e, i - w*l, w, l + 1), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w*l), bpl_l(p, e, i - w*l, w, l + 1), e[i - 1])
 | 
				
			||||||
@ -782,6 +783,7 @@ def bpl_l(p, e, i, w, l):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_l_m(p, e, i, w, l):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the linear model, i.e., previous releases
 | 
					    timestamp using the linear model, i.e., previous releases
 | 
				
			||||||
@ -800,7 +802,6 @@ def bpl_l(p, e, i, w, l):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_l_m(p, e, i, w, l):
 | 
					 | 
				
			||||||
  if i - w*l > 1:
 | 
					  if i - w*l > 1:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w*l), bpl_l_m(p, e, i - w*l, w, l + 1), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w*l), bpl_l_m(p, e, i - w*l, w, l + 1), e[i - 1])
 | 
				
			||||||
  elif i - w*l <= 1:
 | 
					  elif i - w*l <= 1:
 | 
				
			||||||
@ -809,6 +810,7 @@ def bpl_l_m(p, e, i, w, l):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_e(p, e, i, w, h):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the exponential model, i.e., previous releases
 | 
					    timestamp using the exponential model, i.e., previous releases
 | 
				
			||||||
@ -826,7 +828,6 @@ def bpl_l_m(p, e, i, w, l):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_e(p, e, i, w, h):
 | 
					 | 
				
			||||||
  if i - w**h > 1:
 | 
					  if i - w**h > 1:
 | 
				
			||||||
    # print('bpl_e: %d - %d [%d]' %(i, i - w**h, w**h))
 | 
					    # print('bpl_e: %d - %d [%d]' %(i, i - w**h, w**h))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w**h), bpl_e(p, e, i - w**h, w, h + 1), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w**h), bpl_e(p, e, i - w**h, w, h + 1), e[i - 1])
 | 
				
			||||||
@ -838,6 +839,7 @@ def bpl_e(p, e, i, w, h):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bpl_e_m(p, e, i, w, h):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total backward privacy loss at the current
 | 
					    Calculate the total backward privacy loss at the current
 | 
				
			||||||
    timestamp using the exponential model, i.e., previous releases
 | 
					    timestamp using the exponential model, i.e., previous releases
 | 
				
			||||||
@ -856,7 +858,6 @@ def bpl_e(p, e, i, w, h):
 | 
				
			|||||||
      a - The backward privacy loss at the current timestamp
 | 
					      a - The backward privacy loss at the current timestamp
 | 
				
			||||||
          due to the previous data releases.
 | 
					          due to the previous data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def bpl_e_m(p, e, i, w, h):
 | 
					 | 
				
			||||||
  if i - w**h > 1:
 | 
					  if i - w**h > 1:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w**h), bpl_e_m(p, e, i - w**h, w, h + 1), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w**h), bpl_e_m(p, e, i - w**h, w, h + 1), e[i - 1])
 | 
				
			||||||
  elif i - w**h <= 1:
 | 
					  elif i - w**h <= 1:
 | 
				
			||||||
@ -865,6 +866,7 @@ def bpl_e_m(p, e, i, w, h):
 | 
				
			|||||||
    return e[0]
 | 
					    return e[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl(p, a, e, t):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp.
 | 
					    timestamp.
 | 
				
			||||||
@ -880,13 +882,13 @@ def bpl_e_m(p, e, i, w, h):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl(p, a, e, t):
 | 
					 | 
				
			||||||
  a[t - 1] = e[t - 1]
 | 
					  a[t - 1] = e[t - 1]
 | 
				
			||||||
  for i in range(t - 2, -1, -1):
 | 
					  for i in range(t - 2, -1, -1):
 | 
				
			||||||
    a[i] = priv_l(p, a[i + 1], e[i])
 | 
					    a[i] = priv_l(p, a[i + 1], e[i])
 | 
				
			||||||
  return a
 | 
					  return a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_m(p, a, e, t):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp, using memoization.
 | 
					    timestamp, using memoization.
 | 
				
			||||||
@ -902,7 +904,6 @@ def fpl(p, a, e, t):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_m(p, a, e, t):
 | 
					 | 
				
			||||||
  a[t - 1] = e[t - 1]
 | 
					  a[t - 1] = e[t - 1]
 | 
				
			||||||
  for i in range(t - 2, -1, -1):
 | 
					  for i in range(t - 2, -1, -1):
 | 
				
			||||||
    a[i] = priv_l_m(p, a[i + 1], e[i])
 | 
					    a[i] = priv_l_m(p, a[i + 1], e[i])
 | 
				
			||||||
@ -921,6 +922,7 @@ def fpl_lmdk_mem(p, a, e, t, lmdk):
 | 
				
			|||||||
  return a
 | 
					  return a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_s(p, e, i, t, w):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the static model, i.e., next releases
 | 
					    timestamp using the static model, i.e., next releases
 | 
				
			||||||
@ -936,7 +938,6 @@ def fpl_lmdk_mem(p, a, e, t, lmdk):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_s(p, e, i, t, w):
 | 
					 | 
				
			||||||
  if i + w < t:
 | 
					  if i + w < t:
 | 
				
			||||||
    # print('fpl_s: %d - %d [%d]' %(i, i + w, w))
 | 
					    # print('fpl_s: %d - %d [%d]' %(i, i + w, w))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w), fpl_s(p, e, i + w, t, w), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w), fpl_s(p, e, i + w, t, w), e[i - 1])
 | 
				
			||||||
@ -948,6 +949,7 @@ def fpl_s(p, e, i, t, w):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_s_m(p, e, i, t, w):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the static model, i.e., next releases
 | 
					    timestamp using the static model, i.e., next releases
 | 
				
			||||||
@ -963,7 +965,6 @@ def fpl_s(p, e, i, t, w):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_s_m(p, e, i, t, w):
 | 
					 | 
				
			||||||
  if i + w < t:
 | 
					  if i + w < t:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w), fpl_s_m(p, e, i + w, t, w), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w), fpl_s_m(p, e, i + w, t, w), e[i - 1])
 | 
				
			||||||
  elif i + w >= t:
 | 
					  elif i + w >= t:
 | 
				
			||||||
@ -972,6 +973,7 @@ def fpl_s_m(p, e, i, t, w):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_l(p, e, i, t, w, l):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the linear model, i.e., next releases
 | 
					    timestamp using the linear model, i.e., next releases
 | 
				
			||||||
@ -989,7 +991,6 @@ def fpl_s_m(p, e, i, t, w):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_l(p, e, i, t, w, l):
 | 
					 | 
				
			||||||
  if i + w*l < t:
 | 
					  if i + w*l < t:
 | 
				
			||||||
    # print('fpl_l: %d - %d [%d]' %(i, i + w*l, w*l))
 | 
					    # print('fpl_l: %d - %d [%d]' %(i, i + w*l, w*l))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w*l), fpl_l(p, e, i + w*l, t, w, l + 1), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w*l), fpl_l(p, e, i + w*l, t, w, l + 1), e[i - 1])
 | 
				
			||||||
@ -1001,6 +1002,7 @@ def fpl_l(p, e, i, t, w, l):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_l_m(p, e, i, t, w, l):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the linear model, i.e., next releases
 | 
					    timestamp using the linear model, i.e., next releases
 | 
				
			||||||
@ -1019,7 +1021,6 @@ def fpl_l(p, e, i, t, w, l):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_l_m(p, e, i, t, w, l):
 | 
					 | 
				
			||||||
  if i + w*l < t:
 | 
					  if i + w*l < t:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w*l), fpl_l_m(p, e, i + w*l, t, w, l + 1), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w*l), fpl_l_m(p, e, i + w*l, t, w, l + 1), e[i - 1])
 | 
				
			||||||
  elif i + w*l >= t:
 | 
					  elif i + w*l >= t:
 | 
				
			||||||
@ -1028,6 +1029,7 @@ def fpl_l_m(p, e, i, t, w, l):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_e(p, e, i, t, w, h):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the exponential model, i.e., next releases
 | 
					    timestamp using the exponential model, i.e., next releases
 | 
				
			||||||
@ -1045,7 +1047,6 @@ def fpl_l_m(p, e, i, t, w, l):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_e(p, e, i, t, w, h):
 | 
					 | 
				
			||||||
  if i + w**h < t:
 | 
					  if i + w**h < t:
 | 
				
			||||||
    # print('fpl_e: %d - %d [%d]' %(i, i + w**h, w**h))
 | 
					    # print('fpl_e: %d - %d [%d]' %(i, i + w**h, w**h))
 | 
				
			||||||
    return priv_l(np.linalg.matrix_power(p, w**h), fpl_e(p, e, i + w**h, t, w, h + 1), e[i - 1])
 | 
					    return priv_l(np.linalg.matrix_power(p, w**h), fpl_e(p, e, i + w**h, t, w, h + 1), e[i - 1])
 | 
				
			||||||
@ -1057,6 +1058,7 @@ def fpl_e(p, e, i, t, w, h):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fpl_e_m(p, e, i, t, w, h):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total forward privacy loss at the current
 | 
					    Calculate the total forward privacy loss at the current
 | 
				
			||||||
    timestamp using the exponential model, i.e., next releases
 | 
					    timestamp using the exponential model, i.e., next releases
 | 
				
			||||||
@ -1075,7 +1077,6 @@ def fpl_e(p, e, i, t, w, h):
 | 
				
			|||||||
      a - The forward privacy loss at the current timestamp
 | 
					      a - The forward privacy loss at the current timestamp
 | 
				
			||||||
          due to the next data releases.
 | 
					          due to the next data releases.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def fpl_e_m(p, e, i, t, w, h):
 | 
					 | 
				
			||||||
  if i + w**h < t:
 | 
					  if i + w**h < t:
 | 
				
			||||||
    return priv_l_m(np.linalg.matrix_power(p, w**h), fpl_e_m(p, e, i + w**h, t, w, h + 1), e[i - 1])
 | 
					    return priv_l_m(np.linalg.matrix_power(p, w**h), fpl_e_m(p, e, i + w**h, t, w, h + 1), e[i - 1])
 | 
				
			||||||
  elif i + w**h >= t:
 | 
					  elif i + w**h >= t:
 | 
				
			||||||
@ -1084,6 +1085,7 @@ def fpl_e_m(p, e, i, t, w, h):
 | 
				
			|||||||
    return e[t - 1]
 | 
					    return e[t - 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def tpl(bpl, fpl, e):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the total privacy loss at every timestamp.
 | 
					    Calculate the total privacy loss at every timestamp.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1094,10 +1096,10 @@ def fpl_e_m(p, e, i, t, w, h):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      The list of total privacy loss at every timestamp.
 | 
					      The list of total privacy loss at every timestamp.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def tpl(bpl, fpl, e):
 | 
					 | 
				
			||||||
  return [x + y - z for (x, y, z) in zip(bpl, fpl, e)]
 | 
					  return [x + y - z for (x, y, z) in zip(bpl, fpl, e)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def tpl_lmdk_mem(e, p_b, p_f, seq, lmdks):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Calculate the temporal privacy loss at every timestamp
 | 
					    Calculate the temporal privacy loss at every timestamp
 | 
				
			||||||
    taking into account landmarks.
 | 
					    taking into account landmarks.
 | 
				
			||||||
@ -1118,7 +1120,6 @@ def tpl(bpl, fpl, e):
 | 
				
			|||||||
      a   - The total privacy loss at every timestamp
 | 
					      a   - The total privacy loss at every timestamp
 | 
				
			||||||
            taking into account landmarks.
 | 
					            taking into account landmarks.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def tpl_lmdk_mem(e, p_b, p_f, seq, lmdks):
 | 
					 | 
				
			||||||
  a_b = np.zeros(len(seq))
 | 
					  a_b = np.zeros(len(seq))
 | 
				
			||||||
  a_f = np.zeros(len(seq))
 | 
					  a_f = np.zeros(len(seq))
 | 
				
			||||||
  a = np.zeros(len(seq))
 | 
					  a = np.zeros(len(seq))
 | 
				
			||||||
@ -1135,6 +1136,7 @@ def tpl_lmdk_mem(e, p_b, p_f, seq, lmdks):
 | 
				
			|||||||
  return a_b, a_f, a
 | 
					  return a_b, a_f, a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_limits(t, seq, lmdks):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Get the limits for the calculation of temporal privacy loss.
 | 
					    Get the limits for the calculation of temporal privacy loss.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1146,7 +1148,6 @@ def tpl_lmdk_mem(e, p_b, p_f, seq, lmdks):
 | 
				
			|||||||
      t_prv - The previous landmark.
 | 
					      t_prv - The previous landmark.
 | 
				
			||||||
      t_nxt - The next landmark.
 | 
					      t_nxt - The next landmark.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def get_limits(t, seq, lmdks):
 | 
					 | 
				
			||||||
  # Add landmark limits.
 | 
					  # Add landmark limits.
 | 
				
			||||||
  seq_lmdks = np.copy(lmdks)
 | 
					  seq_lmdks = np.copy(lmdks)
 | 
				
			||||||
  # if seq[0] not in seq_lmdks:
 | 
					  # if seq[0] not in seq_lmdks:
 | 
				
			||||||
@ -1174,6 +1175,7 @@ def get_limits(t, seq, lmdks):
 | 
				
			|||||||
  return t_prv, t_nxt
 | 
					  return t_prv, t_nxt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def plot_loss(title, e, a_b, a_f, a):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Plots the privacy loss of the time series.
 | 
					    Plots the privacy loss of the time series.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1186,7 +1188,6 @@ def get_limits(t, seq, lmdks):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      Nothing.
 | 
					      Nothing.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def plot_loss(title, e, a_b, a_f, a):
 | 
					 | 
				
			||||||
  plt.rc('font', family='serif')
 | 
					  plt.rc('font', family='serif')
 | 
				
			||||||
  plt.rc('font', size=10)
 | 
					  plt.rc('font', size=10)
 | 
				
			||||||
  plt.rc('text', usetex=True)
 | 
					  plt.rc('text', usetex=True)
 | 
				
			||||||
@ -1221,6 +1222,7 @@ def plot_loss(title, e, a_b, a_f, a):
 | 
				
			|||||||
  plt.show()
 | 
					  plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def cmp_loss(title, a, a_s, a_e, a_l):
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Plots a comparison of the privacy loss of all models.
 | 
					    Plots a comparison of the privacy loss of all models.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1233,7 +1235,6 @@ def plot_loss(title, e, a_b, a_f, a):
 | 
				
			|||||||
    Returns:
 | 
					    Returns:
 | 
				
			||||||
      Nothing.
 | 
					      Nothing.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def cmp_loss(title, a, a_s, a_e, a_l):
 | 
					 | 
				
			||||||
  plt.rc('font', family='serif')
 | 
					  plt.rc('font', family='serif')
 | 
				
			||||||
  plt.rc('font', size=10)
 | 
					  plt.rc('font', size=10)
 | 
				
			||||||
  plt.rc('text', usetex=True)
 | 
					  plt.rc('text', usetex=True)
 | 
				
			||||||
@ -1268,6 +1269,7 @@ def cmp_loss(title, a, a_s, a_e, a_l):
 | 
				
			|||||||
  plt.show()
 | 
					  plt.show()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def parse_args():
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
    Parse arguments.
 | 
					    Parse arguments.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -1284,7 +1286,6 @@ def cmp_loss(title, a, a_s, a_e, a_l):
 | 
				
			|||||||
      -t, --time,         The time limit.
 | 
					      -t, --time,         The time limit.
 | 
				
			||||||
      -w, --window,       The size of the event protection window.
 | 
					      -w, --window,       The size of the event protection window.
 | 
				
			||||||
  '''
 | 
					  '''
 | 
				
			||||||
def parse_args():
 | 
					 | 
				
			||||||
  # Create argument parser.
 | 
					  # Create argument parser.
 | 
				
			||||||
  parser = argparse.ArgumentParser()
 | 
					  parser = argparse.ArgumentParser()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user