186 lines
4.9 KiB
Python
186 lines
4.9 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import sys
|
||
|
sys.path.insert(1, '../lib')
|
||
|
import argparse
|
||
|
import ast
|
||
|
from datetime import datetime
|
||
|
from geopy.distance import distance
|
||
|
import lmdk_bgt
|
||
|
import lmdk_lib
|
||
|
import math
|
||
|
import numpy as np
|
||
|
from matplotlib import pyplot as plt
|
||
|
import time
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
res_file = '/home/manos/Cloud/Data/HUE/Results.zip'
|
||
|
# User's consumption
|
||
|
seq = lmdk_lib.load_data(args, 'cons')
|
||
|
# The name of the dataset
|
||
|
d = 'HUE'
|
||
|
# The landmarks percentages
|
||
|
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||
|
# Landmarks' thresholds
|
||
|
lmdks_th = [0, .54, .68, .88, 1.12, 10]
|
||
|
# The privacy budget
|
||
|
epsilon = 10.0
|
||
|
|
||
|
# Number of methods
|
||
|
n = 3
|
||
|
# Width of bars
|
||
|
bar_width = 1/(n + 1)
|
||
|
# The x axis
|
||
|
x_i = np.arange(len(lmdks_pct))
|
||
|
x_margin = bar_width*(n/2 + 1)
|
||
|
|
||
|
print('\n##############################', d, '\n')
|
||
|
|
||
|
# Initialize plot
|
||
|
lmdk_lib.plot_init()
|
||
|
# The x axis
|
||
|
plt.xticks(x_i, np.array(lmdks_pct, int))
|
||
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
||
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||
|
# The y axis
|
||
|
plt.ylabel('Mean absolute error (kWh)') # Set y axis label.
|
||
|
plt.yscale('log')
|
||
|
# plt.ylim(.01, 10000)
|
||
|
# Bar offset
|
||
|
x_offset = -(bar_width/2)*(n - 1)
|
||
|
|
||
|
mae_u = np.zeros(len(lmdks_pct))
|
||
|
mae_s = np.zeros(len(lmdks_pct))
|
||
|
mae_a = np.zeros(len(lmdks_pct))
|
||
|
mae_evt = 0
|
||
|
mae_usr = 0
|
||
|
|
||
|
for i, pct in enumerate(lmdks_pct):
|
||
|
# Find landmarks
|
||
|
lmdks = seq[seq[:, 1] < lmdks_th[i]]
|
||
|
|
||
|
for _ in range(args.iter):
|
||
|
|
||
|
eps_sel = 0
|
||
|
if pct != 0 and pct != 100:
|
||
|
# Get landmarks timestamps in sequence
|
||
|
lmdks_seq = lmdk_lib.find_lmdks_seq(seq, lmdks)
|
||
|
# Turn landmarks to histogram
|
||
|
hist, h = lmdk_lib.get_hist(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||
|
# Find all possible options
|
||
|
opts = lmdk_sel.get_opts_from_top_h(lmdk_lib.get_seq(1, len(seq)), lmdks_seq)
|
||
|
# Landmarks selection budget
|
||
|
eps_sel = epsilon/(len(lmdks_seq) + 1)
|
||
|
# Get private landmarks timestamps
|
||
|
lmdks_seq, _ = exp_mech.exponential_pareto(hist, opts, exp_mech.score, 1.0, eps_sel)
|
||
|
# Get actual landmarks values
|
||
|
lmdks = seq[lmdks_seq]
|
||
|
|
||
|
# Skip
|
||
|
rls_data_s, bgts_s = lmdk_bgt.skip_cons(seq, lmdks, epsilon - eps_sel)
|
||
|
# lmdk_bgt.validate_bgts(seq, lmdks, epsilon, bgts_s)
|
||
|
mae_s[i] += lmdk_bgt.mae_cons(seq, rls_data_s)/args.iter
|
||
|
|
||
|
# Uniform
|
||
|
rls_data_u, bgts_u = lmdk_bgt.uniform_cons(seq, lmdks, epsilon - eps_sel)
|
||
|
mae_u[i] += lmdk_bgt.mae_cons(seq, rls_data_u)/args.iter
|
||
|
|
||
|
# Adaptive
|
||
|
rls_data_a, _, _ = lmdk_bgt.adaptive_cons(seq, lmdks, epsilon - eps_sel, .5, .5)
|
||
|
mae_a[i] += lmdk_bgt.mae_cons(seq, rls_data_a)/args.iter
|
||
|
|
||
|
# Calculate once
|
||
|
# Event
|
||
|
if i == 0:
|
||
|
rls_data_evt, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[0]], epsilon)
|
||
|
mae_evt += lmdk_bgt.mae_cons(seq, rls_data_evt)/args.iter
|
||
|
# User
|
||
|
if i == 0:
|
||
|
rls_data_usr, _ = lmdk_bgt.uniform_cons(seq, seq[seq[:, 1] < lmdks_th[len(lmdks_th)-1]], epsilon)
|
||
|
mae_usr += lmdk_bgt.mae_cons(seq, rls_data_usr)/args.iter
|
||
|
|
||
|
plt.axhline(
|
||
|
y = mae_evt,
|
||
|
color = '#212121',
|
||
|
linewidth=lmdk_lib.line_width
|
||
|
)
|
||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_evt - mae_evt*.14, 'event')
|
||
|
|
||
|
plt.axhline(
|
||
|
y = mae_usr,
|
||
|
color = '#616161',
|
||
|
linewidth=lmdk_lib.line_width
|
||
|
)
|
||
|
plt.text(x_i[-1] + x_i[-1]*.14, mae_usr - mae_usr*.14, 'user')
|
||
|
|
||
|
plt.bar(
|
||
|
x_i + x_offset,
|
||
|
mae_s,
|
||
|
bar_width,
|
||
|
label='Skip',
|
||
|
linewidth=lmdk_lib.line_width
|
||
|
)
|
||
|
x_offset += bar_width
|
||
|
plt.bar(
|
||
|
x_i + x_offset,
|
||
|
mae_u,
|
||
|
bar_width,
|
||
|
label='Uniform',
|
||
|
linewidth=lmdk_lib.line_width
|
||
|
)
|
||
|
x_offset += bar_width
|
||
|
plt.bar(
|
||
|
x_i + x_offset,
|
||
|
mae_a,
|
||
|
bar_width,
|
||
|
label='Adaptive',
|
||
|
linewidth=lmdk_lib.line_width
|
||
|
)
|
||
|
x_offset += bar_width
|
||
|
|
||
|
path = str('../../rslt/bgt_cmp/' + d)
|
||
|
# Plot legend
|
||
|
lmdk_lib.plot_legend()
|
||
|
# Show plot
|
||
|
# plt.show()
|
||
|
# Save plot
|
||
|
lmdk_lib.save_plot(path + '-sel.pdf')
|
||
|
print('[OK]', flush=True)
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
'''
|
||
|
Parse arguments.
|
||
|
|
||
|
Optional:
|
||
|
res - The results archive file.
|
||
|
iter - The total iterations.
|
||
|
'''
|
||
|
# Create argument parser.
|
||
|
parser = argparse.ArgumentParser()
|
||
|
|
||
|
# Mandatory arguments.
|
||
|
|
||
|
# Optional arguments.
|
||
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/HUE/Results.zip')
|
||
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||
|
|
||
|
# Parse arguments.
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
return args
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
try:
|
||
|
start_time = time.time()
|
||
|
main(parse_args())
|
||
|
end_time = time.time()
|
||
|
print('##############################')
|
||
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
||
|
print('##############################')
|
||
|
except KeyboardInterrupt:
|
||
|
print('Interrupted by user.')
|
||
|
exit()
|