188 lines
4.6 KiB
Python
188 lines
4.6 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import sys
|
||
|
sys.path.insert(1, '../lib')
|
||
|
import argparse
|
||
|
from datetime import datetime
|
||
|
from geopy.distance import distance
|
||
|
import lmdk_bgt
|
||
|
import lmdk_lib
|
||
|
import numpy as np
|
||
|
from matplotlib import pyplot as plt
|
||
|
import time
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
res_file = '/home/manos/Cloud/Data/Copenhagen/Results.zip'
|
||
|
# Contacts for all users
|
||
|
cont_data = lmdk_lib.load_data(args, 'cont')
|
||
|
# Contacts for landmark's percentages for all users
|
||
|
lmdk_data = lmdk_lib.load_data(args, 'usrs_expt')
|
||
|
# The name of the dataset
|
||
|
d = 'Copenhagen'
|
||
|
# The user's id
|
||
|
uid = '623'
|
||
|
# The landmarks percentages
|
||
|
lmdks_pct = [0, 20, 40, 60, 80, 100]
|
||
|
# The privacy budget
|
||
|
epsilon = 1.0
|
||
|
|
||
|
# Number of methods
|
||
|
n = 6
|
||
|
# Width of bars
|
||
|
bar_width = 1/(n + 1)
|
||
|
# The x axis
|
||
|
x_i = np.arange(len(lmdks_pct))
|
||
|
x_margin = bar_width*(n/2 + 1)
|
||
|
|
||
|
print('\n##############################', d, '\n')
|
||
|
# Get user's contacts sequence
|
||
|
seq = cont_data[cont_data[:, 1] == float(uid)]
|
||
|
|
||
|
# Initialize plot
|
||
|
lmdk_lib.plot_init()
|
||
|
# The x axis
|
||
|
plt.xticks(x_i, np.array(lmdks_pct, int))
|
||
|
plt.xlabel('Landmarks percentage') # Set x axis label.
|
||
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
||
|
# The y axis
|
||
|
plt.ylabel('Mean absolute error (m)') # Set y axis label.
|
||
|
plt.yscale('log')
|
||
|
plt.ylim(1, 100000000)
|
||
|
# Bar offset
|
||
|
x_offset = -(bar_width/2)*(n - 1)
|
||
|
|
||
|
mae_u = np.zeros(len(lmdks_pct))
|
||
|
mae_s = np.zeros(len(lmdks_pct))
|
||
|
mae_a = np.zeros(len(lmdks_pct))
|
||
|
mae_r = np.zeros(len(lmdks_pct))
|
||
|
mae_d = np.zeros(len(lmdks_pct))
|
||
|
mae_i = np.zeros(len(lmdks_pct))
|
||
|
for i, pct in enumerate(lmdks_pct):
|
||
|
# Find landmarks
|
||
|
lmdks = lmdk_lib.find_lmdks_cont(lmdk_data, seq, uid, pct)
|
||
|
|
||
|
print(pct, np.shape(lmdks)[0]/np.shape(seq)[0])
|
||
|
|
||
|
# for _ in range(args.iter):
|
||
|
# # Skip
|
||
|
# rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, epsilon)
|
||
|
# mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
|
||
|
|
||
|
# # Uniform
|
||
|
# rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, epsilon)
|
||
|
# mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
|
||
|
|
||
|
# # Adaptive
|
||
|
# rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, epsilon, .5, .5)
|
||
|
# mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
|
||
|
|
||
|
# # Sample
|
||
|
# rls_data_r, _, _ = lmdk_bgt.sample(seq, lmdks, epsilon)
|
||
|
# mae_r[i] += lmdk_bgt.mae(seq, rls_data_r)/args.iter
|
||
|
|
||
|
# # Discount
|
||
|
# rls_data_d, _, _ = lmdk_bgt.discount(seq, lmdks, epsilon)
|
||
|
# mae_d[i] += lmdk_bgt.mae(seq, rls_data_d)/args.iter
|
||
|
|
||
|
# # Incremental
|
||
|
# rls_data_i, _, _ = lmdk_bgt.incremental(seq, lmdks, epsilon, .5)
|
||
|
# mae_i[i] += lmdk_bgt.mae(seq, rls_data_i)/args.iter
|
||
|
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_s,
|
||
|
# bar_width,
|
||
|
# label='Skip',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
# # Plot bars
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_u,
|
||
|
# bar_width,
|
||
|
# label='Uniform',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_a,
|
||
|
# bar_width,
|
||
|
# label='Adaptive',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_r,
|
||
|
# bar_width,
|
||
|
# label='Sample',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_d,
|
||
|
# bar_width,
|
||
|
# label='Discount',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
# plt.bar(
|
||
|
# x_i + x_offset,
|
||
|
# mae_i,
|
||
|
# bar_width,
|
||
|
# label='Incremental',
|
||
|
# linewidth=lmdk_lib.line_width
|
||
|
# )
|
||
|
# x_offset += bar_width
|
||
|
|
||
|
# path = str('rslt/bgt_cmp/' + d)
|
||
|
# # Plot legend
|
||
|
# lmdk_lib.plot_legend()
|
||
|
# # Show plot
|
||
|
# # plt.show()
|
||
|
# # Save plot
|
||
|
# lmdk_lib.save_plot(path + '.pdf')
|
||
|
print('[OK]', flush=True)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
'''
|
||
|
Parse arguments.
|
||
|
|
||
|
Optional:
|
||
|
res - The results archive file.
|
||
|
iter - The total iterations.
|
||
|
'''
|
||
|
# Create argument parser.
|
||
|
parser = argparse.ArgumentParser()
|
||
|
|
||
|
# Mandatory arguments.
|
||
|
|
||
|
# Optional arguments.
|
||
|
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/Copenhagen/Results.zip')
|
||
|
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
|
||
|
|
||
|
# Parse arguments.
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
return args
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
try:
|
||
|
start_time = time.time()
|
||
|
main(parse_args())
|
||
|
end_time = time.time()
|
||
|
print('##############################')
|
||
|
print('Time : %.4fs' % (end_time - start_time))
|
||
|
print('##############################')
|
||
|
except KeyboardInterrupt:
|
||
|
print('Interrupted by user.')
|
||
|
exit()
|