the-last-thing/code/expt/avg_dist.py

122 lines
3.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import sys
sys.path.insert(1, '../lib')
import argparse
import gdp
import lmdk_lib
import math
from matplotlib import pyplot as plt
import numpy as np
import os
import time
def main(args):
# Number of timestamps
seq = lmdk_lib.get_seq(1, args.time)
# Distribution type
dist_type = np.array(range(0, 4))
# Number of landmarks
lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
markers = [
'^', # Symmetric
'v', # Skewed
'D', # Bimodal
's' # Uniform
]
# Initialize plot
lmdk_lib.plot_init()
# The x axis
x_i = np.arange(len(lmdk_n))
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
plt.xlabel('Landmarks (%)') # Set x axis label.
plt.xlim(x_i.min(), x_i.max())
# The y axis
plt.ylabel('Normalized average distance') # Set y axis label.
plt.yscale('log')
plt.ylim(.001, 1)
# Logging
print('Average distance', end='', flush=True)
for d_i, d in enumerate(dist_type):
avg_dist = np.zeros(len(lmdk_n))
# Logging
print('.', end='', flush=True)
for i, n in enumerate(lmdk_n):
for r in range(args.reps):
# Generate landmarks
lmdks = lmdk_lib.get_lmdks(seq, n, d)
# Calculate average distance
avg_cur = 0
for t in seq:
t_prv, t_nxt = gdp.get_limits(t, seq, lmdks)
avg_cur += (abs(t - t_prv) - 1 + abs(t - t_nxt) - 1 )/len(seq)
# Normalized average based on repetitions
avg_dist[i] += avg_cur/args.reps
# Rescaling (min-max normalization)
# https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)
avg_dist = (avg_dist - avg_dist.min())/(avg_dist.max() - avg_dist.min())
# Normalize for log scale
if avg_dist[len(avg_dist) - 1] == 0:
avg_dist[len(avg_dist) - 1] = .001
# Set label
label = lmdk_lib.dist_type_to_str(d_i)
if d_i == 1:
label = 'Skewed'
# Plot line
plt.plot(
x_i,
avg_dist,
label=label,
marker=markers[d_i],
markersize=lmdk_lib.marker_size,
markeredgewidth=0,
linewidth=lmdk_lib.line_width
)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
# plt.show()
# Save plot
lmdk_lib.save_plot(str('../../rslt/avg_dist/' + 'avg-dist' + '.pdf'))
print(' [OK]', flush=True)
'''
Parse arguments.
Optional:
reps - The number of repetitions.
time - The time limit of the sequence.
'''
def parse_args():
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-r', '--reps', help='The number of repetitions.', type=int, default=1)
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
args = parse_args()
start_time = time.time()
main(args)
end_time = time.time()
print('##############################')
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()