2021-10-09 13:27:16 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import sys
|
|
|
|
sys.path.insert(1, '../lib')
|
|
|
|
import argparse
|
|
|
|
import gdp
|
|
|
|
import itertools
|
|
|
|
import lmdk_bgt
|
|
|
|
import lmdk_lib
|
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
# Privacy goal
|
|
|
|
epsilon = 1.0
|
|
|
|
# Number of timestamps
|
|
|
|
seq = lmdk_lib.get_seq(1, args.time)
|
|
|
|
# Correlation degree (higher values means weaker correlations)
|
|
|
|
cor_deg = np.array([.01, .1, 1.0])
|
|
|
|
cor_lbl = ['Strong correlation', 'Moderate correlation', 'Weak correlation']
|
|
|
|
# Distribution type
|
|
|
|
dist_type = np.array(range(0, 4))
|
|
|
|
# Number of landmarks
|
|
|
|
lmdk_n = np.array(range(0, args.time + 1, int(args.time/5)))
|
|
|
|
# Width of bars
|
|
|
|
bar_width = 1/(len(dist_type) + 1)
|
|
|
|
# For each correlation degree
|
|
|
|
for c_i, c in enumerate(cor_deg):
|
|
|
|
# Logging
|
|
|
|
title = cor_lbl[c_i]
|
|
|
|
print('(%d/%d) %s' %(c_i + 1, len(cor_deg), title), end='', flush=True)
|
|
|
|
# The transition matrix
|
|
|
|
p = gdp.gen_trans_mt(2, c)
|
|
|
|
# Bar offset
|
|
|
|
x_offset = -(bar_width/2)*(len(dist_type) - 1)
|
|
|
|
# Initialize plot
|
|
|
|
lmdk_lib.plot_init()
|
|
|
|
# The x axis
|
|
|
|
x_i = np.arange(len(lmdk_n))
|
|
|
|
plt.xticks(x_i, ((lmdk_n/len(seq))*100).astype(int))
|
|
|
|
plt.xlabel('Landmarks (%)') # Set x axis label.
|
|
|
|
x_margin = bar_width*(len(dist_type)/2 + 1)
|
|
|
|
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
|
|
|
|
# The y axis
|
2021-10-14 06:12:48 +02:00
|
|
|
plt.ylabel('Overall privacy loss') # Set y axis label.
|
2021-10-09 13:27:16 +02:00
|
|
|
plt.yscale('log')
|
|
|
|
plt.ylim(epsilon/10, 100*len(seq))
|
|
|
|
# plt.ylim(0, 10000)
|
|
|
|
for d_i, d in enumerate(dist_type):
|
|
|
|
print('.', end='', flush=True)
|
|
|
|
# Initialization
|
|
|
|
e = np.zeros(len(lmdk_n))
|
|
|
|
a = np.zeros(len(lmdk_n))
|
|
|
|
for i, n in enumerate(lmdk_n):
|
2021-10-14 06:12:48 +02:00
|
|
|
for r in range(args.iter):
|
2021-10-09 13:27:16 +02:00
|
|
|
# Generate landmarks
|
|
|
|
lmdks = lmdk_lib.get_lmdks(seq, n, d)
|
|
|
|
# Uniform budget allocation
|
|
|
|
e_cur = lmdk_bgt.uniform(seq, lmdks, epsilon)
|
|
|
|
_, _, a_cur = gdp.tpl_lmdk_mem(e_cur, p, p, seq, lmdks)
|
|
|
|
# Save privacy loss
|
2021-10-14 06:12:48 +02:00
|
|
|
e[i] += np.sum(e_cur)/args.iter
|
|
|
|
a[i] += np.sum(a_cur)/args.iter
|
2021-10-09 13:27:16 +02:00
|
|
|
# Set label
|
|
|
|
label = lmdk_lib.dist_type_to_str(d_i)
|
|
|
|
if d_i == 1:
|
|
|
|
label = 'Skewed'
|
|
|
|
# Plot bar for current distribution
|
|
|
|
plt.bar(
|
|
|
|
x_i + x_offset,
|
|
|
|
a,
|
|
|
|
bar_width,
|
|
|
|
label=label,
|
|
|
|
linewidth=lmdk_lib.line_width
|
|
|
|
)
|
|
|
|
# Change offset for next bar
|
|
|
|
x_offset += bar_width
|
|
|
|
# Plot line for no correlation
|
|
|
|
plt.plot(
|
|
|
|
x_i,
|
|
|
|
e,
|
|
|
|
linewidth=lmdk_lib.line_width,
|
|
|
|
color='#e0e0e0',
|
|
|
|
)
|
|
|
|
# Plot legend
|
|
|
|
lmdk_lib.plot_legend()
|
|
|
|
# Show plot
|
|
|
|
# plt.show()
|
|
|
|
# Save plot
|
|
|
|
lmdk_lib.save_plot(str('../../rslt/dist_cor/' + title + '.pdf'))
|
|
|
|
print(' [OK]', flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
2021-10-14 06:12:48 +02:00
|
|
|
'''
|
|
|
|
Parse arguments.
|
|
|
|
|
|
|
|
Optional:
|
|
|
|
iter - The number of repetitions.
|
|
|
|
time - The time limit of the sequence.
|
|
|
|
'''
|
2021-10-09 13:27:16 +02:00
|
|
|
# Create argument parser.
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
# Mandatory arguments.
|
|
|
|
|
|
|
|
# Optional arguments.
|
2021-10-14 06:12:48 +02:00
|
|
|
parser.add_argument('-i', '--iter', help='The number of repetitions.', type=int, default=1)
|
2021-10-09 13:27:16 +02:00
|
|
|
parser.add_argument('-t', '--time', help='The time limit of the sequence.', type=int, default=100)
|
|
|
|
|
|
|
|
# Parse arguments.
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
try:
|
|
|
|
args = parse_args()
|
|
|
|
start_time = time.time()
|
|
|
|
main(args)
|
|
|
|
end_time = time.time()
|
|
|
|
print('##############################')
|
|
|
|
print('Time elapsed: %s' % (time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))
|
|
|
|
print('##############################')
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print('Interrupted by user.')
|
|
|
|
exit()
|