the-last-thing/code/expt/bgt_cmp.py

251 lines
7.3 KiB
Python
Raw Permalink Normal View History

2021-07-26 17:08:16 +02:00
#!/usr/bin/env python3
import sys
sys.path.insert(1, 'code/lib')
import argparse
from datetime import datetime
from geopy.distance import distance
import lmdk_bgt
import lmdk_lib
import numpy as np
from matplotlib import pyplot as plt
import time
def main(args):
# The data files
data_files = {
'T-drive': '/home/manos/Cloud/Data/T-drive/Results.zip',
'Geolife': '/home/manos/Cloud/Data/Geolife/Results.zip'
}
# Data related info
data_info = {
'T-drive': {
'uid': 2,
'lmdks': {
0: {'dist': 0, 'per': 1000}, # 0.0%
20: {'dist': 2095, 'per': 30}, # 19.6%
40: {'dist': 2790, 'per': 30}, # 40.2%
60: {'dist': 3590, 'per': 30}, # 59.9%
80: {'dist': 4825, 'per': 30}, # 79.4%
100: {'dist': 10350, 'per': 30} # 100.0%
}
},
'Geolife': {
'uid': 97,
'lmdks': {
0: {'dist': 0, 'per': 100000}, # 0.0%
20: {'dist': 205, 'per': 30}, # 19.8%
40: {'dist': 450, 'per': 30}, # 41.7%
60: {'dist': 725, 'per': 30}, # 59.2%
80: {'dist': 855, 'per': 30}, # 82.1%
100: {'dist': 50000, 'per': 30} # 100.0%
}
}
}
# The data sets
data_sets = {}
# Load data sets
for df in data_files:
args.res = data_files[df]
data_sets[df] = lmdk_lib.load_data(args, 'usrs_data')
# Geo-I configuration
# epsilon = level/radius
# Radius is in meters
bgt_conf = [
{'epsilon': 1},
# {'label': 'ln(2)/200', 'epsilon': 0.0035, 'level': 0.69314718056, 'radius': 200},
# {'label': 'ln(4)/200', 'epsilon': 0.0069, 'level': 1.38629436112, 'radius': 200},
# {'label': 'ln(6)/200', 'epsilon': 0.0090, 'level': 1.79175946923, 'radius': 200}
]
# Number of methods
n = 6
# Width of bars
bar_width = 1/(n + 1)
# The x axis
x_i = np.arange(len(list(data_info.values())[0]['lmdks']))
x_margin = bar_width*(n/2 + 1)
for d in data_sets:
# d = 'T-drive'
# d = 'Geolife'
print('\n##############################', d, '\n')
args.res = data_files[d]
data = data_sets[d]
# Truncate trajectory according to arguments
seq = data[data[:,0]==data_info[d]['uid'], :][:args.time]
# Initialize plot
lmdk_lib.plot_init()
# The x axis
plt.xticks(x_i, np.array([key for key in data_info[d]['lmdks']]).astype(int))
plt.xlabel('Landmarks percentage') # Set x axis label.
plt.xlim(x_i.min() - x_margin, x_i.max() + x_margin)
# The y axis
plt.ylabel('Mean absolute error (m)') # Set y axis label.
plt.yscale('log')
2021-07-26 17:49:41 +02:00
plt.ylim(1, 100000000)
2021-07-26 17:08:16 +02:00
# Bar offset
x_offset = -(bar_width/2)*(n - 1)
mae_u = np.zeros(len(data_info[d]['lmdks']))
mae_s = np.zeros(len(data_info[d]['lmdks']))
mae_a = np.zeros(len(data_info[d]['lmdks']))
mae_r = np.zeros(len(data_info[d]['lmdks']))
mae_d = np.zeros(len(data_info[d]['lmdks']))
mae_i = np.zeros(len(data_info[d]['lmdks']))
for i, lmdk in enumerate(data_info[d]['lmdks']):
# Find landmarks
args.dist = data_info[d]['lmdks'][lmdk]['dist']
args.per = data_info[d]['lmdks'][lmdk]['per']
lmdks = lmdk_lib.find_lmdks(seq, args)[:args.time]
# Print stats
lmdk_lib.lmdks_stats(args, lmdks)
# # Find long enough sequences
# usrs = np.unique(data[:,0])
# for usr_i, usr in enumerate(usrs):
# traj = data[data[:,0]==usr, :]
# if(len(traj)) >= 1000 and len(traj) < 2000:
# print(usr, len(traj))
for bgt in bgt_conf:
for _ in range(args.iter):
# Skip
rls_data_s, _ = lmdk_bgt.skip(seq, lmdks, bgt['epsilon'])
mae_s[i] += lmdk_bgt.mae(seq, rls_data_s)/args.iter
# Uniform
rls_data_u, _ = lmdk_bgt.uniform_r(seq, lmdks, bgt['epsilon'])
mae_u[i] += lmdk_bgt.mae(seq, rls_data_u)/args.iter
# Adaptive
rls_data_a, _, _ = lmdk_bgt.adaptive(seq, lmdks, bgt['epsilon'], .5, .5)
mae_a[i] += lmdk_bgt.mae(seq, rls_data_a)/args.iter
# Sample
rls_data_r, _, _ = lmdk_bgt.sample(seq, lmdks, bgt['epsilon'])
mae_r[i] += lmdk_bgt.mae(seq, rls_data_r)/args.iter
# Discount
rls_data_d, _, _ = lmdk_bgt.discount(seq, lmdks, bgt['epsilon'])
mae_d[i] += lmdk_bgt.mae(seq, rls_data_d)/args.iter
# Incremental
2021-07-26 17:13:01 +02:00
rls_data_i, _, _ = lmdk_bgt.incremental(seq, lmdks, bgt['epsilon'], .5)
2021-07-26 17:08:16 +02:00
mae_i[i] += lmdk_bgt.mae(seq, rls_data_i)/args.iter
# print(
# '\nEpsilon : %f\n'
# 'Sampled : %d%% (%d/%d)\n'
# 'Landmarks: %d%% (%d/%d)\n'
# %(bgt['epsilon'], 100*(len(seq) - skipped)/len(seq), len(seq) - skipped, len(seq), 100*len(lmdks)/len(seq), len(lmdks), len(seq))
# )
# s, l = lmdk_lib.simplify_data(seq, lmdks)
# # Validate the process
# lmdk_bgt.validate_bgts(s, l, bgt['epsilon'], bgts)
# # Analysis
# lmdk_bgt.utility_analysis(seq, lmdks, rls_data, bgt['epsilon'])
plt.bar(
x_i + x_offset,
mae_s,
bar_width,
label='Skip',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
# Plot bars
plt.bar(
x_i + x_offset,
mae_u,
bar_width,
label='Uniform',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
plt.bar(
x_i + x_offset,
mae_a,
bar_width,
label='Adaptive',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
plt.bar(
x_i + x_offset,
mae_r,
bar_width,
label='Sample',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
plt.bar(
x_i + x_offset,
mae_d,
bar_width,
label='Discount',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
plt.bar(
x_i + x_offset,
mae_i,
bar_width,
label='Incremental',
linewidth=lmdk_lib.line_width
)
x_offset += bar_width
path = str('rslt/bgt_cmp/' + d)
# Plot legend
lmdk_lib.plot_legend()
# Show plot
2021-07-26 17:28:23 +02:00
# plt.show()
2021-07-26 17:08:16 +02:00
# Save plot
2021-07-26 17:28:23 +02:00
lmdk_lib.save_plot(path + '.pdf')
2021-07-26 17:08:16 +02:00
print('[OK]', flush=True)
def parse_args():
'''
Parse arguments.
Optional:
dist - The coordinates distance threshold in meters.
per - The timestaps period threshold in mimutes.
time - The total timestamps.
iter - The total iterations.
'''
# Create argument parser.
parser = argparse.ArgumentParser()
# Mandatory arguments.
# Optional arguments.
parser.add_argument('-l', '--dist', help='The coordinates distance threshold in meters.', type=int, default=200)
parser.add_argument('-p', '--per', help='The timestaps period threshold in mimutes.', type=int, default=30)
parser.add_argument('-r', '--res', help='The results archive file.', type=str, default='/home/manos/Cloud/Data/T-drive/Results.zip')
parser.add_argument('-t', '--time', help='The total timestamps.', type=int, default=1000)
parser.add_argument('-i', '--iter', help='The total iterations.', type=int, default=1)
# Parse arguments.
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
start_time = time.time()
main(parse_args())
end_time = time.time()
print('##############################')
print('Time : %.4fs' % (end_time - start_time))
print('##############################')
except KeyboardInterrupt:
print('Interrupted by user.')
exit()